scholarly journals Simultaneous Galvanic Generation of Fe2+ Catalyst and Spontaneous Energy Release in the Galvano-Fenton Technique: A Numerical Investigation of Phenol’s Oxidation and Energy Production and Saving

Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 943
Author(s):  
Kaouther Kerboua ◽  
Oualid Hamdaoui ◽  
Naoufel Haddour ◽  
Abdulaziz Alghyamah

The present paper investigates the potential of the Galvano-Fenton process as an advanced technique in terms of the simultaneous oxidation of a model pollutant, phenol, and the energy release and saving as compared to conventional electrochemical techniques, namely, Fenton, Fenton-like, and Electro-Fenton. A numerical model describing the electrochemical, electrolytic, and phenol’s mineralization reactions is presented. Simulations are conducted to predict the kinetics of ferrous and ferric ions, radicals’ formation, and phenol degradation along with released power. Parametric analysis and comparisons are also performed between the basic configuration of the Galvano-Fenton process and its upgraded version integrating a pre-immersion stage of the electrodes in the electrolyte equivalent to 25% of the total experiment’s duration. The ratio of the initial concentration of H2O2 to the concentration of the released/added Fe2+ catalyst is varied from 10 to 30. The effect of phenol concentration is inspected over the range of 0.188 to 10 mg/L as well. Compared to conventional Fenton-based techniques, the Galvano-Fenton process demonstrated a higher performance by reaching 1.34% of degradation efficiency per released J. This is associated with the generation of hydroxyl radicals of 0.047 nM/released J with initial concentrations of hydrogen peroxide and phenol of 0.187 mM and 2 µM, respectively. Moreover, the integration of the pre-immersion stage allowed the overcoming the barrier of the null degradation rate at the initial instant.

2007 ◽  
Vol 6 (6) ◽  
pp. 479-482
Author(s):  
Ilie Siminiceanu ◽  
Beatrice Iurascu ◽  
Miguel Vincente

2010 ◽  
Vol 72 ◽  
pp. 46-52 ◽  
Author(s):  
Laurent Royer ◽  
Stéphane Mathieu ◽  
Christophe Liebaut ◽  
Pierre Steinmetz

For energy production and also for the glass industry, finding new refractory alloys which could permit to increase the process temperatures to 1200°C or more is a permanent challenge. Chromium base alloys can be good candidates, considering the melting point of Cr itself, and also its low corrosion rate in molten glass. Two families of alloys have been studied for this purpose, Cr-Mo-W and Cr-Ta-X alloys (X= Mo, Si..). A finer selection of compositions has been done, to optimize their chemical and mechanical properties. Kinetics of HT oxidation by air, of corrosion by molten glass and also creep properties of several alloys have been measured up to 1250°C. The results obtained with the best alloys (Cr-Ta base) give positive indications as regards the possibility of their industrial use.


Author(s):  
Mohammad Al-Hwaiti ◽  
Hamidi Abdul Aziz ◽  
Mohd Azmier Ahmad ◽  
Reyad Al-Shawabkeh

Adsorption techniques for industrial wastewater treatment rich in heavy metals and aqueous solutions of water-soluble such as Cl−, F−, HCO3−, NO3−, SO2−4, and PO3−, often include technologies for toxicity removals. The recent advancement and technical applicability in the treatment of chlorine and chlorinated compounds from industrial wastewater are reviewed in this article. Chlorine and chlorinated compounds are among the common discharged constituents from numerous industries. They can be carcinogenic or naturally toxic and can pose issues to aquatic ecosystems and human beings. Thus, elimination of chlorides and chlorinated compounds from water or wastewater is inevitable to get rid of the problem. Several techniques are being applied for the reduction of chlorine and chlorinated compounds in water. These include biodegradation, photochemical, adsorption, chemical, electrochemical, photo-electrochemical, membrane, supercritical extraction and catalytic method. Chlorine can react with various organic and inorganic micro-pollutants. However, the potential reactivity of chlorine for specific compounds is small, and only minor variations in the structure of the parent compound are anticipated in the water treatment process under typical conditions. This paper reviews different techniques and aspects related to chlorine removal, the types of chlorine species in solution and their catalyst, chlorine fate and transport into the environment, electrochemical techniques for de-chlorination of water, kinetics, mechanisms of reduction of chlorinated compounds, and kinetics of the electrochemical reaction of chlorine compounds. Keywords: Industrial waste, Kinetics, Wastewater, Water purification


2009 ◽  
Vol 8 (7) ◽  
pp. 985 ◽  
Author(s):  
Amilcar Machulek Jr. ◽  
José Ermírio F. Moraes ◽  
Laura T. Okano ◽  
Cristina A. Silvério ◽  
Frank H. Quina

1966 ◽  
Vol 38 (3) ◽  
pp. 385-391 ◽  
Author(s):  
D. M. Oglesby ◽  
J. D. Johnson ◽  
C. N. Reilley

2010 ◽  
Vol 41 (6) ◽  
pp. 699-704 ◽  
Author(s):  
Yao-Hui Huang ◽  
Yu-Jen Huang ◽  
Hung-Chih Tsai ◽  
Hung-Ta Chen

1953 ◽  
Vol 6 (3) ◽  
pp. 302 ◽  
Author(s):  
JA Barker ◽  
RC Croft

A study has been made of the kinetics of the diffusion of anhydrous FeC1, in graphite. I t was found that this process can be represented for stages between 50 and 100 per cent. saturation of the graphite and at temperatures in the range 200 to 360 OC by a relation of the type δc/δt = D(δ2c/δr2 + δc/δ/r), providing the diffusion coefficient D is assigned several values for concentrations of occluded FeCl3 above and below a critical concentration. The value of the latter was found to be about two-thirds the saturation concentration of FeCl3 in graphite, this value apparently being the point at which open hexagonal packing of intercalated ferric ions is complete and a closer hexagonal packing commences. Values of the activation energies of occlusion for concentrations above and below two-thirds saturation were found from the relations of corresponding values of diffusion coefficients to temper- ature. The small difference between these activation energies which were of the order of 2 to 3 kcal is attributed to a cancelling of effects, thus the energy necessary to separate carbon lamellae in early stages of occlusion is offset in later stages by hindrance imposed on diffusing molecules by those already occluded. Reduction of particle size of graphite accelerated the occlusion of FeCl3.


2011 ◽  
Vol 11 (1) ◽  
pp. 129-134 ◽  
Author(s):  
A. Dulov ◽  
N. Dulova ◽  
Y. Veressinina ◽  
M. Trapido

The degradation of propoxycarbazone-sodium, an active component of commercial herbicide, in aqueous solution with ozone, UV photolysis and advanced oxidation processes: O3/UV, O3/UV/H2O2, H2O2/UV, and the Fenton process was studied. All these methods of degradation proved feasible. The kinetics of propoxycarbazone-sodium degradation in water followed the pseudo-first order equation for all studied processes except the Fenton treatment. The application of schemes with ozone demonstrated low pseudo-first order rate constants within the range of 10−4 s−1. Addition of UV radiation to the processes improved the removal of propoxycarbazone-sodium and increased the pseudo-first order rate constants to 10−3 s−1. The Fenton process was the most efficient and resulted in 5 and 60 s of half-life and 90% conversion time of propoxycarbazone-sodium, respectively, at 14 mM H2O2 concentration. UV treatment and the Fenton process may be recommended for practical application in decontamination of water or wastewater.


1998 ◽  
Vol 18 (5) ◽  
pp. 373 ◽  
Author(s):  
K. Bandyopadhyay ◽  
D. Das ◽  
B. R. Maiti

Author(s):  
Pierre Buffiere ◽  
Liliana Delgadillo Mirquez ◽  
Jean Philippe Steyer ◽  
Nicolas Bernet ◽  
Jean Philippe Delgenes

Anaerobic digestion of solid wastes is an emerging solution for both waste management and energy production. The high complexity of the process is mostly attributed to the absence of descriptors for the design and the prediction of such a process. This paper presents an approach for the description of organic matter based on several biochemical parameters, established on 22 different organic wastes. The lignocellulosic content is the most important parameter for the prediction of anaerobic biodegradability and methane production; in addition, the knowledge of the carbohydrate, lipid and protein contents is also crucial and makes possible a prediction of the intrinsic kinetics of the reaction.


Sign in / Sign up

Export Citation Format

Share Document