scholarly journals Photochemical Generation of Methyl Chloride from Humic Aicd: Impacts of Precursor Concentration, Solution pH, Solution Salinity and Ferric Ion

Author(s):  
Hui Liu ◽  
Yingying Pu ◽  
Tong Tong ◽  
Xiaomei Zhu ◽  
Bing Sun ◽  
...  

Methyl chloride (CH3Cl) is presently understood to arise from biotic and abiotic processes in marine systems. However, the production of CH3Cl via photochemical processes has not been well studied. Here, we reported the production of CH3Cl from humic acid (HA) in sunlit saline water and the effects of the concentration of HA, chloride ions, ferric ions and pH were investigated. HA in aqueous chloride solutions or natural seawater were irradiated under an artificial light, and the amounts of CH3Cl were determined using a purge-and-trap and gas chromatography-mass spectrometry. CH3Cl was generated upon irradiation and its amount increased with increasing irradiation time and the light intensity. The formation of CH3Cl increased with an increase of HA concentration ranging from 2 mg L−1 to 20 mg L−1 and chloride ion concentration ranging from 0.02 mol L−1 to 0.5 mol L−1. The photochemical production of CH3Cl was pH-dependent, with the highest amount of CH3Cl generating near neutral conditions. Additionally, the generation of CH3Cl was inhibited by ferric ions. Finally, natural coastal seawater was irradiated under artificial light and the concentration of CH3Cl rose significantly. Our results suggest that the photochemical process of HA may be a source of CH3Cl in the marine environment.

2012 ◽  
Vol 9 (6) ◽  
pp. 558 ◽  
Author(s):  
Lei Wu ◽  
Xuefeng Hu

Environmental context Aromatic amines are widely used chemicals, which show enhanced toxicity and longer environmental persistence when halogenated. We investigated the chlorination of aniline in seawater and in natural aqueous solutions containing Fe3+ and Cl–, under simulated sunlight irradiation. The results increase our understanding of the transformation pathway of typical nitrogen-containing aromatic contaminants in the environment. Abstract Photochlorination of aniline was observed in aqueous solutions containing dissolved FeIII and chloride ions under simulated solar light irradiation. Effects of O2, Cl–, Fe3+ and pH on the formation of chloroanilines (CAs) were investigated. para-chloroaniline (4CA) was identified as the main chlorinated product. The formation of 4CA is enhanced with increased concentrations of Cl– or Fe3+, and decreased pH, whereas oxygen plays a negligible role in the process. The results indicate that, Cl• is formed mainly by the photodissociation of FeCl2+–FeCl2+ complexes, and reacts with Cl– to produce Cl2•–. Aniline is then oxidised by Cl2•– into an anilino radical cation, which further reacts with Cl2•– to generate CAs. The photochlorination of aniline in natural seawater was also observed. Other phototransformation products of aniline were detected and a transformation pathway was proposed. This work provides evidence for the photochemical chlorination path of aniline-based aromatic amines in aqueous solutions.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Adrian Radoń ◽  
Dariusz Łukowiec ◽  
Patryk Włodarczyk

AbstractThe dielectric properties and electrical conduction mechanism of bismuth oxychloride (BiOCl) plates synthesized using chloramine-T as the chloride ion source were investigated. Thermally-activated structure rebuilding was monitored using broadband dielectric spectroscopy, which showed that the onset temperature of this process was 283 K. This rebuilding was related to the introduction of free chloride ions into [Bi2O2]2+ layers and their growth, which increased the intensity of the (101) diffraction peak. The electrical conductivity and dielectric permittivity were related to the movement of chloride ions between plates (in the low-frequency region), the interplanar motion of Cl− ions at higher frequencies, vibrations of these ions, and charge carrier hopping at frequencies above 10 kHz. The influence of the free chloride ion concentration on the electrical conductivity was also described. Structure rebuilding was associated with a lower concentration of free chloride ions, which significantly decreased the conductivity. According to the analysis, the BiOCl plate conductivity was related to the movement of Cl− ions, not electrons.


1988 ◽  
Vol 66 (5) ◽  
pp. 637-642 ◽  
Author(s):  
Timothy J. Blaxter ◽  
Peter L. Carlen

The dendrites of granule cells in hippocampal slices responded to γ-aminobutyric acid (GABA) with a depolarization. The response was blocked by picrotoxin in a noncompetitive manner. Reductions in the extracellular chloride ion concentration changed the reversal potential of the response by an amount predicted from the Nernst equation for chloride ion. Chloride-dependent hyperpolarizing responses were sometimes also found in the cell body of the granule cells. Since the reversal potential followed that predicted from the Nernst equation for chloride, we conclude that the response was mediated by chloride ions alone with no contribution from other ions. This has not previously been shown for the depolarizing response to GABA in central neurons.


1980 ◽  
Vol 43 (331) ◽  
pp. 901-904 ◽  
Author(s):  
D. Alun Humphreys ◽  
John H. Thomas ◽  
Peter A. Williams ◽  
Robert F. Symes

SummaryThe chemical stabilities of mendipite, Pb3O2Cl2, diaboleïte, Pb2CuCl2(OH)4, chloroxiphite, Pb3CuCl2O2(OH)2, and cumengéite, Pb19Cu24Cl42 (OH)44, have been determined in aqueous solution at 298.2 K. Values of standard Gibbs free energy of formation, ΔGf°, for the four minerals are −740, −1160, −1129, and −15163±20 kJ mol−1 respectively. These values have been used to construct the stability diagram shown in fig. I which illustrates their relationships to each other and to the minerals cotunnite, PbCl2, paralaurionite, PbOHCl, and litharge, PbO. This diagram shows that mendipite occupies a large stability field and should readily form from cold, aqueous, mineralizing solutions containing variable amounts of lead and chloride ions, and over a broad pH range. The formation of paralaurionite and of cotunnite requires a considerable increase in chloride ion concentration, although paralaurionite can crystallize under much less extreme conditions than cotunnite. The encroachment of the copper minerals on to the stability fields of those mineral phases containing lead(II) only is significant even at very low relative activities of cupric ion. Chloroxiphite has a large stability field, and at given concentrations of cupric ion, diaboleïte is stable at relatively high aCl−. Cumengéite will only form at high concentrations of chloride ion.


2009 ◽  
Vol 8 (7) ◽  
pp. 985 ◽  
Author(s):  
Amilcar Machulek Jr. ◽  
José Ermírio F. Moraes ◽  
Laura T. Okano ◽  
Cristina A. Silvério ◽  
Frank H. Quina

1962 ◽  
Vol 40 (2) ◽  
pp. 303-315 ◽  
Author(s):  
R. I. Birks

Nerve cells and their processes in cat sympathetic ganglia and frog skeletal muscle have shown on electron microscopic examination alterations in subcellular morphology as a result of treatment with digoxin. Non-nervous cells were unaffected by the drug. These changes included, in ganglia, swelling of the affected cells, shrinkage of mitochondria with pronounced increase in internal density, swelling of Nissl substance in nerve cell bodies, and loss of structural detail in nerve processes. At the myoneural junction the motor nerve endings were swollen, mitochondria were altered, and the synaptic vesicles were reduced in numbers, those that remained being swollen. These changes were accompanied by invagination of the axon surface by Schwann cell processes.Cell swelling, but not the subcellular changes, was prevented by substitution of sulphate for chloride ions in the extracellular space. When the extracellular sodium ion concentration was reduced to 20 meq/l. the cells were completely protected against digoxin. It is concluded that swelling is caused by net uptake of sodium and chloride as a result of the known inhibitory action of digoxin on sodium extrusion by nerve cells. The possibility that these structural changes in subcellular organelles may be caused by a raised concentration of intracellular sodium ions, such as might occur during activity of excitable cells, is discussed.


2020 ◽  
Vol 10 (21) ◽  
pp. 7450
Author(s):  
Ali Q. Alorabi ◽  
Fahad A. Alharthi ◽  
Mohamed Azizi ◽  
Nabil Al-Zaqri ◽  
Adel El-Marghany ◽  
...  

In this work, the widely-abundant, cheap, wild plant Lavandula pubescens Decne was evaluated as an adsorbent for removing Pb(II) ions from wastewater. The chemical composition of the plant was partially isolated and characterized by the corresponding techniques, including gas chromatography–mass spectrometry, gas liquid chromatography, and FTIR spectroscopy. The adsorption capacity of the dried plant material for Pb(II) ions increased with increasing contact time, initial ion concentration, and temperature, while it decreased with increasing adsorbent dosage. The optimum condition for Pb(II) adsorption was determined as 550 mg/L initial metal concentration, pH ≤ 7, and 90 min of contact. The best fit for Pb(II) adsorption isotherms was the linear form of the Freundlich model; however, the maximum capacity indicated by Langmuir was 91.32 mg/g. The experimental data fit better the pseudo-second-order kinetic model (R2 = 0.969), suggesting chemisorption process. Thermodynamic data revealed an endothermic, nonspontaneous, and adsorption process favored at higher concentrations.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1625
Author(s):  
Rekha Singh ◽  
Woohang Kim ◽  
James A. Smith

This study quantifies the effects of chloride ions on silver and copper release from porous ceramic cubes embedded with silver and copper and its effect on E. coli disinfection in drinking water. Log-reduction of E. coli by silver ions decreased after 4 h of contact time as the chloride ion concentration increased from 0 to 250 mg/L but, it was not changed by copper ions under the same conditions. For silver addition by silver-ceramic cubes, log reductions of E. coli decreased sharply from 7.2 to 1.6 after 12 h as the chloride concentration increased from 0 to 250 mg/L. For the silver-ceramic cube experiments, chloride ion also reduced the total silver concentration in solution. After 24 h, total silver concentrations in solution decreased from 61 µg/L to 20 µg/L for corresponding chloride ion concentrations. According to the MINTEQ equilibrium model analysis, the decrease in disinfection ability with silver embedded ceramic cubes could be the result of precipitation of silver ions as silver chloride. This suggests that AgCl was precipitating within the pore space of the ceramic. These results indicate that, although ionic silver is a highly effective disinfectant for E. coli, the presence of chloride ions can significantly reduce disinfection efficacy. For copper-ceramic cubes, log reductions of E. coli by copper embedded cubes increased from 1.2 to 1.5 when chloride ion concentration increased from 0 to 250 mg/L. Total copper concentrations in solution increased from 4 µg/L to 14 µg/L for corresponding chloride ion concentrations. These results point towards the synergistic effect of chloride ions on copper oxidation as an increased concentration of chloride enhances copper release.


Author(s):  
M E Hanley ◽  
S K D Sanders ◽  
H -M Stanton ◽  
R A Billington ◽  
R Boden

Abstract Background and Aims The combination of rising sea levels and increased storm frequency and intensity is predicted to increase the severity of oceanic storm surge events and the impact of flooding on coastal ecosystems globally. Understanding how plant communities respond to this threat necessitates experiments involving plant immersion in saline water, but logistical issues and natural variation in seawater composition mean that pure NaCl solutions or marine aquarium salts (MS) are widely used. Nonetheless, their comparative impact on plant ecophysiology, and thus relevance to understanding real-world flooding scenarios, is unknown. Methods In the first of two experiments, we examined how six ecophysiological responses in white clover (Trifolium repens) varied when plants were subjected to five different inundation treatments: deionized water, natural seawater, an MS solution and two NaCl solutions. In a second experiment, we examined how immersion in deionized water, MS solution and natural seawater affected six European perennial herb species, three native to Spanish sand dunes, and three from British coastal grasslands. Results The two NaCl solutions induced exceptional Trifolium mortality, but responses varied little between MS and seawater treatments. In the second experiment, although leaf tissue necrosis and proline concentrations increased, and growth decreased compared with untreated controls, only one response in one species varied between MS and seawater treatments. Chemical speciation modelling revealed major variation in free Na+ and Cl− between NaCl solutions and seawater, but minor differences between MS and seawater. Conclusions We show that NaCl solutions are unsuitable surrogates to investigate plant response to elevated environmental salinity. Although responses to natural seawater and MS were consistent within species, there was notable between-species variation. Consequently, the first steps to elucidating how these species-specific responses influence coastal plant community recovery following storm surge can likely be achieved using commercial marine aquarium salts as substitutes for natural seawater.


2012 ◽  
Vol 166-169 ◽  
pp. 1987-1993 ◽  
Author(s):  
Mengcheng Chen ◽  
Kai Wang ◽  
Quanshui Wu ◽  
Zhen Qin

According to the service environment of light rail transit and subway structures, in this paper experiments on the corrosion characteristics of reinforced concrete under single corrosion environment of stray current, single corrosion environment of chloride ions and joint corrosion environment of stray current and chloride ions were respectively carried out. Loading direct current electric field was used to simulate the stray current. The experimental results showed that, the corrosion growth process of the rebar in reinforced concrete under single environment of chloride ions was slow and stable, while that under single environment of stray current being separated two stages, i.e., rapidly increasing stage and stably varying stage. In addition, the rebar of reinforced concrete in stray current alone environment was corroded faster than that in chloride ion alone environment did; when stray current and chloride ion coexist, the stray current speeded up the chloride ion transportation, which gave rise to the increase of the corrosion rate of the rebar of reinforced concrete; the corrosion degree of the rebar depended on the chloride ion concentration, stray current strength and test time. The stronger the stray current strength, the longer the stray current corrosion period and the heavier the chloride ion concentration, the more the corrosion products of the rebar and thus the more serious the reinforced concrete deterioration.


Sign in / Sign up

Export Citation Format

Share Document