A green and high energy density asymmetric supercapacitor based on ultrathin MnO2nanostructures and functional mesoporous carbon nanotube electrodes

Nanoscale ◽  
2012 ◽  
Vol 4 (3) ◽  
pp. 807-812 ◽  
Author(s):  
Hao Jiang ◽  
Chunzhong Li ◽  
Ting Sun ◽  
Jan Ma
2018 ◽  
Vol 47 (47) ◽  
pp. 17146-17152 ◽  
Author(s):  
Xiao Liang ◽  
Qiufan Wang ◽  
Yun Ma ◽  
Daohong Zhang

A two-ply CNT yarn asymmetric supercapacitor was fabricated by assembling a CuCo2O4 nanowire positive electrode and a PPy nanoparticle negative electrode. The full cell exhibits a high specific capacitance of 59.55 mF cm−2 and a high energy density of 0.02 mW h cm−2.


2015 ◽  
Vol 3 (25) ◽  
pp. 13244-13253 ◽  
Author(s):  
Xiaocheng Li ◽  
Juanjuan Shen ◽  
Wei Sun ◽  
Xuda Hong ◽  
Rutao Wang ◽  
...  

An asymmetric supercapacitor device with an energy density of 89.7 W h kg−1 at commercial level mass loading was successfully fabricated.


2019 ◽  
Vol 07 (01n02) ◽  
pp. 1950004 ◽  
Author(s):  
Muhammad Sajjad ◽  
Xu Chen ◽  
Chunxin Yu ◽  
Linlin Guan ◽  
Shuyu Zhang ◽  
...  

NiCo2S4/CNTs (NCS/CNTs) hybrid nanostructures have been synthesized by a facile one-step solvothermal method with varying content of CNTs. The structure and morphology of the synthesized NCS/CNTs hybrid revealed the formation of platelets anchored on the CNT matrix. When evaluated as electrode materials for supercapacitor, the as-synthesized NCS/CNT-1 hybrid (with 1% of CNT) manifested remarkable specific capacitance of 1690[Formula: see text]F[Formula: see text]g[Formula: see text] at the current density of 5[Formula: see text]A[Formula: see text]g[Formula: see text]. More importantly, an asymmetric supercapacitor (ASC) assembled based on NCS/CNT-1 as positive electrode and carbon nanotube paper (CNP) as a negative electrode delivered high energy density of 58[Formula: see text]Wh[Formula: see text]kg[Formula: see text] under power density of 8[Formula: see text]kW[Formula: see text]kg[Formula: see text]. Furthermore, the ASC device exhibited high cycling stability and 77.7% of initial specific capacitance retention after 7000 charge–discharge cycles at a current density of 8[Formula: see text]A[Formula: see text]g[Formula: see text]. The large enhancement in the electrochemical performance is attributed to the benefits of the nanostructured architecture, including good mechanical stability, high electrical conductivity as well as buffering for the volume changes during charge–discharge process. These convincing results show that NCS/CNTs hybrid nanostructures are promising electrode materials for high energy density supercapacitors (SCs).


2016 ◽  
Vol 9 (6) ◽  
pp. 2152-2158 ◽  
Author(s):  
Joo Hyeong Lee ◽  
Chong S. Yoon ◽  
Jang-Yeon Hwang ◽  
Sung-Jin Kim ◽  
Filippo Maglia ◽  
...  

A Li-rechargeable battery system based on state-of-the-art cathode and anode technologies demonstrated high energy density, meeting demands for vehicle application.


2010 ◽  
Vol 25 (8) ◽  
pp. 1636-1644 ◽  
Author(s):  
Brian J. Landi ◽  
Cory D. Cress ◽  
Ryne P. Raffaelle

Recent advancements using carbon nanotube electrodes show the ability for multifunctionality as a lithium-ion storage material and as an electrically conductive support for other high capacity materials like silicon or germanium. Experimental data show that replacement of conventional anode designs, which use graphite composites coated on copper foil, with a freestanding silicon-single-walled carbon nanotube (SWCNT) anode, can increase the usable anode capacity by up to 20 times. In this work, a series of calculations were performed to elucidate the relative improvement in battery energy density for such anodes paired with conventional LiCoO2, LiFePO4, and LiNiCoAlO2 cathodes. Results for theoretical flat plate prismatic batteries comprising freestanding silicon-SWCNT anodes with conventional cathodes show energy densities of 275 Wh/kg and 600 Wh/L to be theoretically achievable; this is a 50% improvement over today's commercial cells.


Sign in / Sign up

Export Citation Format

Share Document