Temperature dependent spectral properties of type-I and quasi type-II CdSe/CdS dot-in-rod nanocrystals

2012 ◽  
Vol 14 (10) ◽  
pp. 3505 ◽  
Author(s):  
Xiaoming Wen ◽  
Amit Sitt ◽  
Pyng Yu ◽  
Yon-Rui Toh ◽  
Jau Tang
CrystEngComm ◽  
2014 ◽  
Vol 16 (36) ◽  
pp. 8479-8485 ◽  
Author(s):  
Hamid Reza Khavasi ◽  
Maryam Esmaeili

The crossover between type I and type II Br⋯Br synthons on the formation of coordination compounds has been investigated for the first time.


2003 ◽  
Vol 14 (1) ◽  
pp. 111-127 ◽  
Author(s):  
E. COSKUN ◽  
Z. CAKIR ◽  
P. TAKAC

The standard scales that are used to non-dimensionalize the temperature- and time-dependent Ginzburg–Landau (TTDGL) model developed by Schmid [27], eliminate temperature- dependent parameters, and thus do not allow for superconducting phenomena due to variations in temperature. In this study, a set of new scales is presented to non-dimensionalize the TTDGL model so that the resulting dimensionless system depends upon a temperature parameter as well. Moreover, some properties of solutions to TTDGL system as a function of temperature are explored. Numerical experiments illustrating the temperature-dependency of vortex nucleation in type-II superconductors as well as the transition to the Meissner state in type-I superconductors are presented.


Author(s):  
Ronald S. Weinstein ◽  
N. Scott McNutt

The Type I simple cold block device was described by Bullivant and Ames in 1966 and represented the product of the first successful effort to simplify the equipment required to do sophisticated freeze-cleave techniques. Bullivant, Weinstein and Someda described the Type II device which is a modification of the Type I device and was developed as a collaborative effort at the Massachusetts General Hospital and the University of Auckland, New Zealand. The modifications reduced specimen contamination and provided controlled specimen warming for heat-etching of fracture faces. We have now tested the Mass. General Hospital version of the Type II device (called the “Type II-MGH device”) on a wide variety of biological specimens and have established temperature and pressure curves for routine heat-etching with the device.


Author(s):  
G. D. Gagne ◽  
M. F. Miller ◽  
D. A. Peterson

Experimental infection of chimpanzees with non-A, non-B hepatitis (NANB) or with delta agent hepatitis results in the appearance of characteristic cytoplasmic alterations in the hepatocytes. These alterations include spongelike inclusions (Type I), attached convoluted membranes (Type II), tubular structures (Type III), and microtubular aggregates (Type IV) (Fig. 1). Type I, II and III structures are, by association, believed to be derived from endoplasmic reticulum and may be morphogenetically related. Type IV structures are generally observed free in the cytoplasm but sometimes in the vicinity of type III structures. It is not known whether these structures are somehow involved in the replication and/or assembly of the putative NANB virus or whether they are simply nonspecific responses to cellular injury. When treated with uranyl acetate, type I, II and III structures stain intensely as if they might contain nucleic acids. If these structures do correspond to intermediates in the replication of a virus, one might expect them to contain DNA or RNA and the present study was undertaken to explore this possibility.


Author(s):  
T.A. Fassel ◽  
M.J. Schaller ◽  
M.E. Lidstrom ◽  
C.C. Remsen

Methylotrophic bacteria play an Important role in the environment in the oxidation of methane and methanol. Extensive intracytoplasmic membranes (ICM) have been associated with the oxidation processes in methylotrophs and chemolithotrophic bacteria. Classification on the basis of ICM arrangement distinguishes 2 types of methylotrophs. Bundles or vesicular stacks of ICM located away from the cytoplasmic membrane and extending into the cytoplasm are present in Type I methylotrophs. In Type II methylotrophs, the ICM form pairs of peripheral membranes located parallel to the cytoplasmic membrane. Complex cell wall structures of tightly packed cup-shaped subunits have been described in strains of marine and freshwater phototrophic sulfur bacteria and several strains of methane oxidizing bacteria. We examined the ultrastructure of the methylotrophs with particular view of the ICM and surface structural features, between representatives of the Type I Methylomonas albus (BG8), and Type II Methylosinus trichosporium (OB-36).


1987 ◽  
Vol 48 (C5) ◽  
pp. C5-525-C5-528 ◽  
Author(s):  
K. J. MOORE ◽  
P. DAWSON ◽  
C. T. FOXON
Keyword(s):  
Type I ◽  
Type Ii ◽  

1996 ◽  
Vol 75 (03) ◽  
pp. 515-519 ◽  
Author(s):  
Mark J Post ◽  
Anke N de Graaf-Bos ◽  
George Posthuma ◽  
Philip G de Groot ◽  
Jan J Sixma ◽  
...  

Summary Purpose. Thermal angioplasty alters the thrombogenicity of the arterial wall. In previous studies, platelet adhesion was found to increase after heating human subendothelium to 55° C and decrease after heating to 90° C. In the present electron microscopic study, the mechanism of this temperature-dependent platelet adhesion to the heated arterial wall is elucidated by investigating temperature-dependent conformational changes of von Willebrand factor (vWF) and collagen types I and III and the binding of vWF to heated collagen. Methods. Purified vWF and/or collagen was applied to electron microscopic grids and heated by floating on a salt-solution of 37° C, 55° C or 90° C for 15 s. After incubation with a polyclonal antibody against vWF and incubation with protein A/gold, the grids were examined by electron microscopy. Results. At 37° C, vWF was coiled. At 55° C, vWF unfolded, whereas heating at 90° C caused a reduction in antigenicity. Collagen fibers heated to 37° C were 60.3 ± 3.1 nm wide. Heating to 55° C resulted in the unwinding of the fibers, increasing the width to 87.5 ± 8.2 nm (p < 0.01). Heating to 90° C resulted in denatured fibers with an enlarged width of 85.1 ± 6.1 nm (p < 0.05). Heating of collagen to 55° C resulted in an increased vWF binding as compared to collagen heated to 37° C or to 90° C. Incubation of collagen with vWF, prior to heating, resulted in a vWF binding after heating to 55° C that was similar to the 37° C binding and a decreased binding after 90° C. Conclusions. After 55° C heating, the von Willebrand factor molecule unfolds and collagen types I and III exhibit an increased adhesiveness for von Willebrand factor. Heating to 90° C denatures von Willebrand factor and collagen. The conformation changes of von Willebrand factor and its altered binding to collagen type I and III may explain the increased and decreased platelet adhesion to subendothelium after 55° C and 90° C heating, respectively.


Sign in / Sign up

Export Citation Format

Share Document