Reversible homogeneous catalysis of carbon dioxide hydrogenation/reduction at room temperature and low pressures

Author(s):  
Serge Schreiner ◽  
James Y. Yu ◽  
Lauri Vaska
2016 ◽  
Vol 9 (1) ◽  
pp. 141-144 ◽  
Author(s):  
Christian Kunkel ◽  
Francesc Viñes ◽  
Francesc Illas

Transition metal carbides are posed as promising materials for carbon dioxide (CO2) capture and storage at room temperature and low pressures, as shown by density functional simulations on proper models, and estimates of adsorption/desorption rates. Aside, the activated nature of the adsorbed CO2 opens the path for its conversion into other valuable chemicals.


ACS Catalysis ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 2121-2133
Author(s):  
Chao Zhang ◽  
Chenxi Cao ◽  
Yulong Zhang ◽  
Xianglin Liu ◽  
Jing Xu ◽  
...  

2021 ◽  
Author(s):  
Matthew Quesne ◽  
C. Richard A. Catlow ◽  
Nora Henriette De Leeuw

We present several in silico insights into the MAX-phase of early transition metal silicon carbides and explore how these affect carbon dioxide hydrogenation. Periodic desity functional methodology is applied to...


2013 ◽  
Vol 395-396 ◽  
pp. 637-640
Author(s):  
Yi Yang ◽  
Zheng Ping Wang ◽  
Ling Meng ◽  
Lian Jun Wang

MIL-101, a metal-organic framework material, was synthesized by the high-temperature hydrothermal method. Triethylenetetramine (TETA) modification enabled the effective grafting of an amino group onto the surface of the materials and their pore structure. The crystal structure, micromorphology, specific surface area, and pore structure of the samples before and after modification were analyzed with an X-ray diffractometer, scanning electron microscope, specific surface and aperture tester, and infrared spectrometer. The carbon dioxide adsorption properties of the samples were determined by a thermal analyzer before and after TETA modification. Results show that moderate amino modification can effectively improve the microporous structure of MIL-101 and its carbon dioxide adsorption properties. After modification, the capacity of MIL-101 to adsorb carbon dioxide decreased only by 0.61 wt%, and a high adsorption capacity of 9.45 wt% was maintained after six cycles of adsorption testing at room temperature and ambient pressure.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 522
Author(s):  
Zhi Yan Lee ◽  
Huzein Fahmi bin Hawari ◽  
Gunawan Witjaksono bin Djaswadi ◽  
Kamarulzaman Kamarudin

A tin oxide (SnO2) and reduced graphene oxide (rGO) hybrid composite gas sensor for high-performance carbon dioxide (CO2) gas detection at room temperature was studied. Since it can be used independently from a heater, it emerges as a promising candidate for reducing the complexity of device circuitry, packaging size, and fabrication cost; furthermore, it favors integration into portable devices with a low energy density battery. In this study, SnO2-rGO was prepared via an in-situ chemical reduction route. Dedicated material characterization techniques including field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray (EDX) spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) were conducted. The gas sensor based on the synthesized hybrid composite was successfully tested over a wide range of carbon dioxide concentrations where it exhibited excellent response magnitudes, good linearity, and low detection limit. The synergistic effect can explain the obtained hybrid gas sensor’s prominent sensing properties between SnO2 and rGO that provide excellent charge transport capability and an abundance of sensing sites.


Sign in / Sign up

Export Citation Format

Share Document