scholarly journals The genetic incorporation of thirteen novel non-canonical amino acids

2014 ◽  
Vol 50 (20) ◽  
pp. 2673-2675 ◽  
Author(s):  
Alfred Tuley ◽  
Yane-Shih Wang ◽  
Xinqiang Fang ◽  
Yadagiri Kurra ◽  
Yohannes H. Rezenom ◽  
...  

Thirteen novel non-canonical amino acids were synthesized and tested for suppression of an amber codon using a mutant pyrrolysyl-tRNA synthetase–tRNAPylCUA pair.

2017 ◽  
Author(s):  
Adrian Hohl ◽  
Ram Karan ◽  
Anstassja Akal ◽  
Dominik Renn ◽  
Xuechao Liu ◽  
...  

AbstractThe Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNAPyl are used to facilitate the incorporation of non-canonical amino acids (ncAAs) into the genetic code of bacterial and eukaryotic cells by orthogonally reassigning the amber codon. Currently, the incorporation of new ncAAs requires a cumbersome engineering process composed of several positive and negative selection rounds to select the appropriate PylRS/tRNAPyl pair. Our fast and sensitive engineering approach required only a single FACS selection round to identify 110 orthogonal PylRS variants for the aminoacylation of 20 ncAAs. Pocket-substrate relationship from these variants led to the design of a highly promiscuous PylRS (HpRS), which catalyzed the aminoacylation of 31 structurally diverse lysine derivatives bearing clickable, fluorinated, fluorescent, and biotinylated entities. The high speed and sensitivity of our approach provides a competitive alternative to existing screening methodologies, and delivers insights into the complex PylRS-substrate interactions to facilitate the generation of additional promiscuous variants.


Amino Acids ◽  
2020 ◽  
Author(s):  
Thomas L. Williams ◽  
Debra J. Iskandar ◽  
Alexander R. Nödling ◽  
Yurong Tan ◽  
Louis Y. P. Luk ◽  
...  

AbstractGenetic code expansion is a powerful technique for site-specific incorporation of an unnatural amino acid into a protein of interest. This technique relies on an orthogonal aminoacyl-tRNA synthetase/tRNA pair and has enabled incorporation of over 100 different unnatural amino acids into ribosomally synthesized proteins in cells. Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA from Methanosarcina species are arguably the most widely used orthogonal pair. Here, we investigated whether beneficial effect in unnatural amino acid incorporation caused by N-terminal mutations in PylRS of one species is transferable to PylRS of another species. It was shown that conserved mutations on the N-terminal domain of MmPylRS improved the unnatural amino acid incorporation efficiency up to five folds. As MbPylRS shares high sequence identity to MmPylRS, and the two homologs are often used interchangeably, we examined incorporation of five unnatural amino acids by four MbPylRS variants at two temperatures. Our results indicate that the beneficial N-terminal mutations in MmPylRS did not improve unnatural amino acid incorporation efficiency by MbPylRS. Knowledge from this work contributes to our understanding of PylRS homologs which are needed to improve the technique of genetic code expansion in the future.


ChemBioChem ◽  
2013 ◽  
Vol 14 (16) ◽  
pp. 2100-2105 ◽  
Author(s):  
Vanessa K. Lacey ◽  
Gordon V. Louie ◽  
Joseph P. Noel ◽  
Lei Wang

2015 ◽  
Vol 51 (76) ◽  
pp. 14385-14388 ◽  
Author(s):  
Qingmin Zang ◽  
Seiichi Tada ◽  
Takanori Uzawa ◽  
Daisuke Kiga ◽  
Masayuki Yamamura ◽  
...  

Polyethylene glycol (PEG) of different lengths was genetically incorporated into the backbone of a polypeptide using stop-anticodon and frameshift anticodon-containing tRNAs, which were acylated with PEG-containing amino acids.


2021 ◽  
Author(s):  
Qian Zhou ◽  
Wan-Wan Sun ◽  
Jia-Cong Chen ◽  
Huilu Zhang ◽  
Jie Liu ◽  
...  

Abstract Although elevated circulating amino acids are associated with the onset of type 2 diabetes (T2D), how amino acids act on cell insulin signaling and glucose uptake remains unclear. Herein, we report that phenylalanine modifies insulin receptor beta (IRβ) and inactivates insulin signaling and glucose uptake. Mice fed phenylalanine-rich chow or overexpressing human phenylalanyl-tRNA synthetase (hFARS) developed insulin resistance and symptoms of T2D. Mechanistically, FARS phenylalanylated lysine 1057/1079 of IRβ (F-K1057/1079) inactivated IRβ and prevented insulin from generating insulin signaling to promote glucose uptake by cells. SIRT1 reversed F-K1057/1079 and counteracted the insulin-inactivating effects of hFARS and phenylalanine. F-K1057/1079 and SIRT1 levels of white cells of T2D patients’ blood samples were positively and negatively correlated with T2D onset, respectively. Blocking F-K1057/1079 with phenylalaninol sensitized insulin signaling and relieved T2D symptoms in hFARS-transgenic and db/db mice. We revealed mechanisms of how phenylalanylation inactivates insulin signaling that may be employed to control T2D.


2020 ◽  
Vol 48 (6) ◽  
pp. 3071-3088
Author(s):  
Matthew R McFarland ◽  
Corina D Keller ◽  
Brandon M Childers ◽  
Stephen A Adeniyi ◽  
Holly Corrigall ◽  
...  

Abstract During protein synthesis, charged tRNAs deliver amino acids to translating ribosomes, and are then re-charged by tRNA synthetases (aaRS). In humans, mutant aaRS cause a diversity of neurological disorders, but their molecular aetiologies are incompletely characterised. To understand system responses to aaRS depletion, the yeast glutamine aaRS gene (GLN4) was transcriptionally regulated using doxycycline by tet-off control. Depletion of Gln4p inhibited growth, and induced a GCN4 amino acid starvation response, indicative of uncharged tRNA accumulation and Gcn2 kinase activation. Using a global model of translation that included aaRS recharging, Gln4p depletion was simulated, confirming slowed translation. Modelling also revealed that Gln4p depletion causes negative feedback that matches translational demand for Gln-tRNAGln to aaRS recharging capacity. This maintains normal charged tRNAGln levels despite Gln4p depletion, confirmed experimentally using tRNA Northern blotting. Model analysis resolves the paradox that Gln4p depletion triggers a GCN4 response, despite maintenance of tRNAGln charging levels, revealing that normally, the aaRS population can sequester free, uncharged tRNAs during aminoacylation. Gln4p depletion reduces this sequestration capacity, allowing uncharged tRNAGln to interact with Gcn2 kinase. The study sheds new light on mutant aaRS disease aetiologies, and explains how aaRS sequestration of uncharged tRNAs can prevent GCN4 activation under non-starvation conditions.


Biomolecules ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 255 ◽  
Author(s):  
Sviatlana Smolskaya ◽  
Yaroslav Andreev

More than two decades ago a general method to genetically encode noncanonical or unnatural amino acids (NAAs) with diverse physical, chemical, or biological properties in bacteria, yeast, animals and mammalian cells was developed. More than 200 NAAs have been incorporated into recombinant proteins by means of non-endogenous aminoacyl-tRNA synthetase (aa-RS)/tRNA pair, an orthogonal pair, that directs site-specific incorporation of NAA encoded by a unique codon. The most established method to genetically encode NAAs in Escherichia coli is based on the usage of the desired mutant of Methanocaldococcus janaschii tyrosyl-tRNA synthetase (MjTyrRS) and cognate suppressor tRNA. The amber codon, the least-used stop codon in E. coli, assigns NAA. Until very recently the genetic code expansion technology suffered from a low yield of targeted proteins due to both incompatibilities of orthogonal pair with host cell translational machinery and the competition of suppressor tRNA with release factor (RF) for binding to nonsense codons. Here we describe the latest progress made to enhance nonsense suppression in E. coli with the emphasis on the improved expression vectors encoding for an orthogonal aa-RA/tRNA pair, enhancement of aa-RS and suppressor tRNA efficiency, the evolution of orthogonal EF-Tu and attempts to reduce the effect of RF1.


2007 ◽  
Vol 189 (23) ◽  
pp. 8765-8768 ◽  
Author(s):  
Vrajesh A. Karkhanis ◽  
Anjali P. Mascarenhas ◽  
Susan A. Martinis

ABSTRACT Leucyl-tRNA synthetase (LeuRS) has evolved an editing function to clear misactivated amino acids. An Escherichia coli-based assay was established to identify amino acids that compromise the fidelity of LeuRS and translation. Multiple nonstandard as well as standard amino acids were toxic to the cell when LeuRS editing was inactivated.


Sign in / Sign up

Export Citation Format

Share Document