Robust switching characteristics of CdSe/ZnS quantum dot non-volatile memory devices

2013 ◽  
Vol 15 (30) ◽  
pp. 12762 ◽  
Author(s):  
V. Kannan ◽  
J. K. Rhee
2016 ◽  
Vol 4 (46) ◽  
pp. 10967-10972 ◽  
Author(s):  
Sujaya Kumar Vishwanath ◽  
Jihoon Kim

The all-solution-based memory devices demonstrated excellent bipolar switching behavior with a high resistive switching ratio of 103, excellent endurance of more than 1000 cycles, stable retention time greater than 104s at elevated temperatures, and fast programming speed of 250 ns.


2008 ◽  
Vol 20 (2) ◽  
pp. 025201 ◽  
Author(s):  
Tae-Wook Kim ◽  
Hyejung Choi ◽  
Seong-Hwan Oh ◽  
Minseok Jo ◽  
Gunuk Wang ◽  
...  

2020 ◽  
Vol 29 (01n04) ◽  
pp. 2040001
Author(s):  
N. R. Butterfield ◽  
R. Mays ◽  
B. Khan ◽  
R. Gudlavalleti ◽  
F. C. Jain

This paper presents the theory, fabrication and experimental testing results for a multiple state Non-Volatile Memory (NVM), comprised of hafnium oxide high-k dielectric tunnel and gate barriers as well as a Silicon Quantum Dot Superlattice (QDSL) implemented for the floating gate and inversion channel (QDG) and (QDC) respectively. With the conclusion of Moore’s Law for conventional transistor fabrication, regarding the minimum gate size, current efforts in memory cell research and development are focused on bridging the gap between the conventions of the past sixty years and the future of computing. One method of continuing the increasing chip density is to create multistate devices capable of storing and processing additional logic states beyond 1 and 0. Replacing the silicon nitride floating gate of a conventional Flash NVM with QDSL gives rise to minibands that result in greater control over charge levels stored in the QDG and additional intermediate states. Utilizing Hot Carrier Injection (HCI) programming, for the realized device, various magnitudes of gate voltage pulses demonstrated the ability to accurately control the charge levels stored in the QDG. This corresponds to multiple threshold voltage shifts allowing detection of multiple states during read operations.


2020 ◽  
Vol 78 ◽  
pp. 105584 ◽  
Author(s):  
Jia-Qin Yang ◽  
Li-Yu Ting ◽  
Ruopeng Wang ◽  
Jing-Yu Mao ◽  
Yi Ren ◽  
...  

AIP Advances ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 025111 ◽  
Author(s):  
Divya Kaushik ◽  
Utkarsh Singh ◽  
Upasana Sahu ◽  
Indu Sreedevi ◽  
Debanjan Bhowmik

2014 ◽  
Vol 26 (31) ◽  
pp. 5496-5503 ◽  
Author(s):  
Xiaomu Wang ◽  
Weiguang Xie ◽  
Jian-Bin Xu

2014 ◽  
Vol 602-603 ◽  
pp. 1056-1059 ◽  
Author(s):  
Min Chang Kuan ◽  
Fann Wei Yang ◽  
Chien Min Cheng ◽  
Kai Huang Chen ◽  
Jian Tz Lee

Up to now, the various non-volatile memory devices such as, ferroelectric random access memory (FeRAM), magnetron random access memory (MRAM), and resistance random access memory (RRAM) were widely discussed and investigated. For these nonvolatile memory devices, the resistance random access memory (RRAM) devices will play an important role because of its non-destructive readout, low operation voltage, high operation speed, long retention time, and simple structure. The resistance random access memory (RRAM) devices were only consisting of one resistor and one corresponding transistor. The subject of this work was to study the characteristics of manganese oxide (MnO) thin films deposited on transparent conductive thin film using the rf magnetron sputtering method. The optimal sputtering conditions of as-deposited manganese oxide (MnO) thin films were the rf power of 80 W, chamber pressure of 20 mTorr, substrate temperature of 580°C, and an oxygen concentration of 40%. The basic mechanisms for the bistable resistance switching were observed. In which, the non-volatile memory and switching properties of the manganese oxide (MnO) thin film structures were reported and the relationship between the memory windows and electrical properties was investigated.


Sign in / Sign up

Export Citation Format

Share Document