Targeted photothermal ablation of pathogenic bacterium, Staphylococcus aureus, with nanoscale reduced graphene oxide

2013 ◽  
Vol 1 (19) ◽  
pp. 2496 ◽  
Author(s):  
Yi-Wei Wang ◽  
Yu-Ying Fu ◽  
Ling-Jie Wu ◽  
Juan Li ◽  
Huang-Hao Yang ◽  
...  
2019 ◽  
Vol 7 (17) ◽  
pp. 2771-2781 ◽  
Author(s):  
Milica Budimir ◽  
Roxana Jijie ◽  
Ran Ye ◽  
Alexandre Barras ◽  
Sorin Melinte ◽  
...  

A flexible nanoheater device, consisting of a Au nanohole array coated with reduced graphene oxide–polyethyleneimine, was applied to capture and eradicate both Gram-positive and Gram negative planktonic bacteria and their biofilms.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
N. L. V. Carreño ◽  
A. M. Barbosa ◽  
V. C. Duarte ◽  
C. F. Correa ◽  
C. Ferrúa ◽  
...  

Silver-functionalized reduced graphene oxide (Ag-rGO) nanosheets were prepared by single chemical and thermal processes, with very low concentration of silver. The resulting carbon framework consists of reduced graphene oxide (rGO) sheets or 3D networks, decorated with anchored silver nanoparticles. The Ag-rGO nanosheets were dispersed into a polymer matrix and the composites evaluated for use as biological scaffolds. The rGO material in poly(dimethylsiloxane) (PDMS) has been tested for antimicrobial activity against Gram-positiveStaphylococcus aureus(S. Aureus) bacteria, after exposure times of 24 and 120 hours, as well as in the determination of cell viability on cultures of fibroblast cells (NIH/3T3). Using 1 mL of Ag-rGO in PDMS the antibacterial effectiveness againstStaphylococcus aureuswas limited, showing an increased amount of Colony Forming Units (CFU), after 24 hours of contact. In the cell viability assay, after 48 hours of contact, the group of 1 mL of Ag-rGO with PDMS was the only group that increased cell viability when compared to the control group. In this context, it is believed these behaviors are due to the increase in cell adhesion capacity promoted by the rGO. Thus, the Ag-rGO/PDMS hybrid nanocomposite films can be used as scaffolds for tissue engineering, as they limit antimicrobial activity.


2020 ◽  
Author(s):  
Laura Chirila ◽  
Marcela Corina Rosu ◽  
Sabina Olaru ◽  
Cristian Tudoran ◽  
Dragos-Viorel Cosma ◽  
...  

Ag-TiO2 and Ag-TiO2/reduced graphene oxide nanopowders were deposited onto 100% cotton fabrics via electrostatic spraying method. The surface of cotton fabrics was pre-treated by plasma at atmospheric pressure using argon and nitrogen mixture. The as-prepared cotton fabrics were characterized in terms of structural and optical properties by X-ray diffraction (XRD) and optical reflectance measurements. The photocatalytic self-cleaning ability of Ag-TiO2 and Ag-TiO2/reduced graphene oxide coated cotton fabrics was evaluated by the photo-discoloration of methylene blue and berries juice stains, under 6 h simulated visible light irradiation. The combined functionalized coating on cotton fabrics demonstrated an improved photocatalytic effect compared with untreated cotton fabrics. The antimicrobial activity of Ag-TiO2 and Ag-TiO2/reduced graphene oxide coated cotton fabrics was tested against the Staphylococcus aureus and Candida albicans test strains as model microorganism of skin bacteria and fungi, respectively. An antimicrobial effect against the Staphylococcus aureus is observed even if the inhibition zone is not present. Untreated fabrics showed no antibacterial activity. No inhibitory effect on fungi colony growth was observed.


2019 ◽  
Vol 18 (10) ◽  
pp. 2442-2448 ◽  
Author(s):  
Y. C. Chen ◽  
K. Y. A. Lin ◽  
C. C. Lin ◽  
T. Y. Lu ◽  
Y. H. Lin ◽  
...  

NRC03-DA/nRGO possessed biocompatible properties and NIR photothermal energy conversion capability. The continuous photoinduced NRC03 peptide release consequently improved the therapeutic efficiency of photothermal therapy against S. aureus.


Sign in / Sign up

Export Citation Format

Share Document