scholarly journals High yield, controlled synthesis of graphitic networks from dense micro emulsions

2014 ◽  
Vol 50 (80) ◽  
pp. 11848-11851 ◽  
Author(s):  
E. Negro ◽  
M. Dieci ◽  
D. Sordi ◽  
K. Kowlgi ◽  
M. Makkee ◽  
...  

We propose a new synthesis method to produce hyper-branched carbon nano structures that we call carbon nano networks. These porous, graphitic materials directly grow into a networked structure, do not require the use of an inorganic support, and can be tailored by experimental conditions to better suit their application.




2020 ◽  
Vol 17 (8) ◽  
pp. 628-630
Author(s):  
Vu Binh Duong ◽  
Pham Van Hien ◽  
Tran Thai Ngoc ◽  
Phan Dinh Chau ◽  
Tran Khac Vu

A simple and practical method for the synthesis on a large scale of altretamine (1), a wellknown antitumor drug, has been successfully developed. The synthesis method involves the conversion of cyanuric chloride (2) into altretamine (1) by dimethylamination of 2 with an aqueous solution of 40% dimethylamine and potassium hydroxide in 1, -dioxan 4in one step to give altretamine (1) in high yield.



2020 ◽  
Vol 17 (5) ◽  
pp. 382-388
Author(s):  
Aparna Wadhwa ◽  
Faraat Ali ◽  
Sana Parveen ◽  
Robin Kumar ◽  
Gyanendra N. Singh

Objective: The main aim of the present work is to synthesize chloramphenicol impurity A (CLRMIMP- A) in the purest form and its subsequent characterization by using a panel of sophisticated analytical techniques (LC-MS, DSC, TGA, NMR, FTIR, HPLC, and CHNS) to provide as a reference standard mentioned in most of the international compendiums, including IP, BP, USP, and EP. The present synthetic procedure has not been disclosed anywhere in the prior art. Methods: A simple, cheaper, and new synthesis method was described for the preparation of CLRM-IMP-A. It was synthesized and characterized by FTIR, DSC, TGA, NMR (1H and 13C), LC-MS, CHNS, and HPLC. Results: CLRM-IMP-A present in drugs and dosage form can alter the therapeutic effects and adverse reaction of a drug considerably, it is mandatory to have a precise method for the estimation of impurities to safeguard the public health. Under these circumstances, the presence of CLRM-IMP-A in chloramphenicol (CLRM) requires strict quality control to satisfy the specified regulatory limit. The synthetic impurity obtained was in the pure form to provide a certified reference standard or working standard to stakeholders with defined potency. Conclusion: The present research describes a novel technique for the synthesis of pharmacopoeial impurity, which can help in checking/controlling the quality of the CLRM in the international markets.



Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1906
Author(s):  
Marissa Pérez-Alvarez ◽  
Gregorio Cadenas-Pliego ◽  
Odilia Pérez-Camacho ◽  
Víctor E. Comparán-Padilla ◽  
Christian J. Cabello-Alvarado ◽  
...  

Copper nanoparticles (CuNP) were obtained by a green synthesis method using cotton textile fibers and water as solvent, avoiding the use of toxic reducing agents. The new synthesis method is environmentally friendly, inexpensive, and can be implemented on a larger scale. This method showed the cellulose capacity as a reducing and stabilizing agent for synthetizing Cellulose–Copper nanoparticles (CCuNP). Nanocomposites based on CCuNP were characterized by XRD, TGA, FTIR and DSC. Functional groups present in the CCuNP were identified by FTIR analysis, and XRD patterns disclosed that nanoparticles correspond to pure metallic Cu°, and their sizes are at a range of 13–35 nm. Results demonstrated that CuNPs produced by the new method were homogeneously distributed on the entire surface of the textile fiber, obtaining CCuNP nanocomposites with different copper wt%. Thus, CuNPs obtained by this method are very stable to oxidation and can be stored for months. Characterization studies disclose that the cellulose crystallinity index (CI) is modified in relation to the reaction conditions, and its chemical structure is destroyed when nanocomposites with high copper contents are synthesized. The formation of CuO nanoparticles was confirmed as a by-product, through UV spectroscopy, in the absorbance range of 300–350 nm.



ACS Nano ◽  
2019 ◽  
Vol 13 (8) ◽  
pp. 9482-9490 ◽  
Author(s):  
Qinwei Wei ◽  
Songfeng Pei ◽  
Guodong Wen ◽  
Kun Huang ◽  
Zhaohong Wu ◽  
...  




2008 ◽  
Vol 91 (11) ◽  
pp. 3800-3802 ◽  
Author(s):  
Hu Hanjun ◽  
Zhou Wan-cheng ◽  
Luo Fa ◽  
Zhu Dong-Mei ◽  
Xu Jie


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Madhab Kumar Sen ◽  
Kateřina Hamouzová ◽  
Pavlina Košnarová ◽  
Amit Roy ◽  
Josef Soukup

AbstractBromus sterilis is an annual weedy grass, causing high yield losses in winter cereals. Frequent use of herbicides had led to the evolution of herbicide resistance in this species. Mechanisms underlying herbicide resistance in B. sterilis must be uncovered because this problem is becoming a global threat. qRT-PCR and the next-generation sequencing technologies can elucidate the resistance mechanisms. Although qRT-PCR can calculate precise fold changes, its preciseness depends on the expression of reference genes. Regardless of stable expression in any given condition, no gene can act as a universal reference gene. Hence, it is necessary to identify the suitable reference gene for each species. To our knowledge, there are no reports on the suitable reference gene in any brome species so far. Thus, in this paper, the stability of eight genes was evaluated using qRT-PCR experiments followed by expression stability ranking via five most commonly used software for reference gene selection. Our findings suggest using a combination of 18S rRNA and ACCase to normalise the qRT-PCR data in B. sterilis. Besides, reference genes are also recommended for different experimental conditions. The present study outcomes will facilitate future molecular work in B. sterilis and other related grass species.



Author(s):  
Juliana M. Juárez ◽  
Lisandro F. Venosta ◽  
Oscar A. Anunziata ◽  
Marcos B. Gómez Costa


Sign in / Sign up

Export Citation Format

Share Document