Microwave-assisted synthesis of Bi2Se3ultrathin nanosheets and its electrical conductivities

CrystEngComm ◽  
2014 ◽  
Vol 16 (19) ◽  
pp. 3965-3970 ◽  
Author(s):  
Haiming Xu ◽  
Gang Chen ◽  
Rencheng Jin ◽  
Dahong Chen ◽  
Yu Wang ◽  
...  

Ultrathin Bi2Se3nanosheets (30 nm) have been successfully fabricated with 1 kW microwave power for 1 minute. The maximum power factor of the sample can reach up to 157 μW m−1K−2at 523 K, which is larger than the samples with thicknesses ranging from 50 nm to 100 nm.

2011 ◽  
Vol 347-353 ◽  
pp. 3448-3455
Author(s):  
Ya Jun Yang ◽  
Xian Yun Liu ◽  
Xu Dong Wang ◽  
Mei Ping Jiang ◽  
Xian Feng Chen ◽  
...  

Cobblestone-like CoSb3 nanoparticle films have been achieved via a catalyst-free vapor transport growth technique. The thermoelectric properties of the nanoparticle films were measured from room temperature to around 500 oC. The resultant CoSb3 nanoparticle films show high electrical conductivities due to clean particle surfaces. A maximum power factor reaches 1.848×10−4 W/mK2 at 440 oC. The discussed approach is promising for realizing new types of highly efficient thermoelectric semiconductors.


Author(s):  
Mousumi Chakraborty ◽  
Sanjay Baweja ◽  
Sunita Bhagat ◽  
TejpalSingh Chundawat

Abstract In the present study Schiff’s bases are synthesized by the conventional as well as by microwave irradiation. Excellent yield within short reaction time is obtained using microwave irradiation along with other advantages like mild reaction condition, non-hazardous and safer environmental conditions. The effects of temperature, reactant molar ratio, and microwave power variation on yield are observed. Mathematical model has been developed using matlab software to obtain the yield as a function of microwave power. Kinetic study of the reaction has also been attempted. Schiff’s bases structures are confirmed by IR, 1HNMR, Mass Spectra and elemental analysis.


1998 ◽  
Vol 545 ◽  
Author(s):  
Paul W. Brazis ◽  
Melissa Rocci ◽  
Duck-Young Chung ◽  
Mercouri G. Kanatzidis ◽  
Carl R. Kannewurf

AbstractIn previous investigations we have introduced a variety of new chalcogenide-based materials with promising properties for thermoelectric applications. The chalcogenide CsBi4Te6 was previously reported to have a high ZT product with a maximum value at 260K. In order to improve this value, a series of doped CsBi4Te6 samples has been synthesized. Current doping studies have been very encouraging, with one sample found to have a maximum power factor of 51.5 μW/cm·K2 at 184 K. This paper reports on material characterization studies through the usual transport measurements to determine optimum doping concentration for various dopants.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Phatcharee Phoempoon ◽  
Lek. Sikong

The microwave assisted synthesis nowadays attracts a great deal of attention. Monoclinic phase VO2(M) was prepared from NH4VO3andH2C2O4·2H2Oby a rapid microwave assisted technique. The synthesis parameters, microwave irradiation time, microwave power, and calcinations temperature were systematically varied and their influences on the structure and morphology were evaluated. The microwave power level has been carried out in range 180–600 W. TEM analysis demonstrated nanosized samples. The structural and morphological properties were measured using XRD, TEM, and thermal analyses. The variations of vanadium phase led to thermochromic properties.


Author(s):  
Wen Yang ◽  
Lili Wang ◽  
Yiming Mi ◽  
Guanghong Zhong ◽  
Qiuju Ma ◽  
...  

The work theoretically calculated the electronic structure and electrical transport properties of two configurations of single-walled MoS2 nanotubes: armchair nanotubes (ANTs) and zigzag nanotubes (ZNTs) based on the density functional theory and Boltzmann transport method. ANTs have an indirect one. while ZNTs have a direct bandgap structure. The Seebeck coefficient ([Formula: see text]), electrical conductivity ([Formula: see text] and power factor ([Formula: see text] were calculated as a function of carrier concentration, chemical potential and temperature using the Boltzmann transport method. The calculated power factor ([Formula: see text]) indicates that the most promising electronic properties were exhibited by [Formula: see text]-type ANTs and [Formula: see text]-type ZNTs. The [Formula: see text] of narrow bandgap (6, 6) (7, 7) (8, 8) semiconductors reached [Formula: see text], [Formula: see text] and [Formula: see text]WK[Formula: see text]m[Formula: see text] at room-temperature, respectively. (7, 7) nanotube have a maximum power factor of [Formula: see text]WK[Formula: see text]m[Formula: see text] at 950 K, and the maximum power factor of ANTs is almost twice that of ZNTs.


Author(s):  
Nirmala B ◽  
Shalini K. S.

Aluminophosphate zeolites(AlPO4- tridymit) was prepared using aluminium hydroxide precursor as a source of alumina and triethylamine (TEA) as the structure directing agent via microwave technique. The influence of initial Aluminium- phosphorus ratio, microwave power and heating time on the dimensions of AlPO4- tridymit crystals formed in the system Al2O3:P2O5:(C2H5)3N has been studied systematically through powder XRD, SEM, EDAX and BET analysis. It was found that the crystallinity and morphology of the AlPO4- tridymit formed was depended on the initial Al- P ratio, microwave power and duration. High crystalline products were obtained with 1:1(Al:P) ratio while for 1:2 (Al:P) , the products obtained were slightly amorphous.


Sign in / Sign up

Export Citation Format

Share Document