scholarly journals High-resolution insights into the early stages of silver nucleation and growth

2015 ◽  
Vol 179 ◽  
pp. 59-77 ◽  
Author(s):  
Cornelia M. Völkle ◽  
Denis Gebauer ◽  
Helmut Cölfen

Nucleation and growth of silver nanoparticles has already been investigated with various experimental and computational tools. However, owing to inherent problems associated with the analytical characterization of nucleation processes, there is a general lack of experimental data regarding the earliest precursors and smallest Ag(0) clusters. Here, we address this problem by the application of Synthetic Boundary Crystallization Ultracentrifugation, utilizing a multiwavelength detector for the first time, complemented by a specialized titration assay. These techniques shed new light on silver nanoparticle precursors existing in the pre-nucleation regime, and the initially nucleated ensemble of nanoclusters. For the first time, we present experimental data of UV-Vis spectra for fractionated silver clusters. These allow for unsurpassed insights into the sequence of nucleation and early growth species as well as their optical properties.

2019 ◽  
Vol 21 (8) ◽  
pp. 4193-4199 ◽  
Author(s):  
Apurva N. Naik ◽  
Sabyasachi Patra ◽  
Debasis Sen ◽  
Asok Goswami

LaMer type nucleation curve has been experimentally studied for the first time for synthesis of membrane hosted silver nanoparticles under continuous precursor supply. Radiotracer has been uniquely used as a probe in this investigation.


2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Suparna Mukherji ◽  
Sharda Bharti ◽  
Gauri Shukla ◽  
Soumyo Mukherji

Abstract Silver nanoparticles (AgNPs) have application potential in diverse areas ranging from wound healing to catalysis and sensing. The possibility for optimizing the physical, chemical and optical properties for an application by tailoring the shape and size of silver nanoparticles has motived much research on methods for synthesis of size- and shape-controlled AgNPs. The shape and size of AgNPs are reported to vary depending on choice of the Ag precursor salt, reducing agent, stabilizing agent and on the synthesis technique used. This chapter provides a detailed review on various synthesis approaches that may be used for synthesis of AgNPs of desired size and shape. Silver nanoparticles may be synthesized using diverse routes, including, physical, chemical, photochemical, biological and microwave -based techniques. Synthesis of AgNPs of diverse shapes, such as, nanospheres, nanorods, nanobars, nanoprisms, decahedral nanoparticles and triangular bipyramids is also discussed for chemical-, photochemical- and microwave-based synthesis routes. The choice of chemicals used for reduction and stabilization of nanoparticles is found to influence their shape and size significantly. A discussion on the mechanism of synthesis of AgNPs through nucleation and growth processes is discussed for AgNPs of varying shape and sizes so as to provide an insight on the various synthesis routes. Techniques, such as, electron microscopy, spectroscopy, and crystallography that can be used for characterizing the AgNPs formed in terms of their shape, sizes, crystal structure and chemical composition are also discussed in this chapter. Graphical Abstract:


2011 ◽  
Vol 264-265 ◽  
pp. 530-534
Author(s):  
M.M. Alam ◽  
M. Harun ◽  
Momtazul Islam

Silver nanoparticles protected by Tetradecyltrimethyl Ammonium Bromide (TTAB) were prepared in a one-phase electrochemical system. Electrochemical procedure, based on the dissolution of a metallic anode in an appropriate solvent, has been used to get silver nanoparticles. It is possible to get different particle size by changing the current density. The optical properties of the silver Nanoparticles were investigated by UV-Vis and Photoluminescence (PL) Spectroscopy. Absorption peak were found 424 nm which confirm the presence of Ag nanoparticles. The structural properties of the samples were carried out by scanning electron microscopy (SEM) and X-ray diffraction (XRD) measurements. XRD confirmed the preferential growth of Ag nanoparticles whose average size is ≈ 20 nm in the <111> orientation as well as purity of silver clusters.


2021 ◽  
Vol 11 (10) ◽  
pp. 4638
Author(s):  
Jose Luis López-Miranda ◽  
Rodrigo Esparza ◽  
Marlen Alexis González-Reyna ◽  
Beatriz Liliana España-Sánchez ◽  
Angel Ramon Hernandez-Martinez ◽  
...  

This work reports, for the first time, the synthesis of silver nanoparticles using extracts of the species of Sargassum natans and Sargassum fluitans (AgNPs-S). Their antibacterial and catalytic properties are compared with silver nanoparticles obtained by chemical synthesis (AgNPs-C). The characterization of AgNPs-S and AgNPs-C was carried out using ultraviolet–visible spectroscopy (UV–Vis), dynamic light scattering (DLS), zeta potential, a scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis. The synthesis of silver nanoparticles using Sargassum extract was optimized through varying experimental parameters, such as the type of solvent used to prepare the extract, the volume of the extract, and the pH of the system. The most efficient sample (AgNPs-S) was prepared with a water–ethanol-based extract, using a 3:1 volumetric ratio of extract: a precursor salt with the addition of 1 mL of NaOH pH = 14. The AgNPs-C were spherical in shape, with an average particle size of 11.55 nm, while the AgNPs-S were polyhedral shaped, with an average particle size of 26.39 nm. The synthesized AgNPs-S were found to have significantly higher catalytic activity for the degradation of methylene blue and more effective antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa than AgNPs-C.


2012 ◽  
Vol 9 (3) ◽  
pp. 1320-1326
Author(s):  
Liang Zhou

A serial of aminophosphonates zirconium with the different arm lengths of –(CH2)n– organic chains (n=2–6) was synthesized for the first time. These compounds are characterized by FT-IR, SEM, TEM, TG and nitrogen adsorption-desorption. And based on the experimental data, these materials not only have layer structure mesoporous and good thermal stability such as zirconium phosphate, but also can be adjusted the layer distance, pore size and pore volume. So aminophosphonates zirconium posses special excellent properties and will have potential prospect applications.


2020 ◽  
Vol 6 (16) ◽  
pp. eaaz7772 ◽  
Author(s):  
P. Nabais ◽  
J. Oliveira ◽  
F. Pina ◽  
N. Teixeira ◽  
V. de Freitas ◽  
...  

The molecular structure of the medieval watercolor known as folium has finally been solved in the 21st century. The interdisciplinary approach taken was the key to producing extracts that had been prepared following medieval instructions, and shows the blue/purple chromophore as the major dye in Chrozophora tinctoria fruits (shell). A multi-analytical characterization of its structure was made using HPLC-DAD-MS, GC-MS, NMR (1H, 13C, COSY, HSQC, HMBC, INADEQUATE), and computational studies. The results demonstrate that the blue compound corresponds to 6′-hydroxy-4,4′-dimethoxy-1,1′-dimethyl-5′-{[3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl]oxy}-[3,3′-bipyridine]-2,2′,5,6(1H,1′H)-tetraone, a hermidin derivative, which we named chrozophoridin. Experimental data and computational modeling studies show that this mono-glycosylated dimer is represented by two stable isomers (atropisomers). This is an indispensable piece of knowledge for the characterization of this medieval dye in works of art such as medieval manuscript illuminations and for testing its stability and contributes to the preservation of our cultural heritage.


2016 ◽  
Vol 4 (5) ◽  
pp. 1771-1783 ◽  
Author(s):  
Guijia Cui ◽  
Zebin Sun ◽  
Haizhen Li ◽  
Xiaoning Liu ◽  
Yan Liu ◽  
...  

In this study, magnetic elongated hollow mesoporous silica nanocapsules (MSNCs) with center-radial pore channels were successfully fabricated for the first time by using the surfactant-template synthesis approach.


2018 ◽  
Vol 4 (5) ◽  
pp. 721-730
Author(s):  
Gabriel R. Hernández-Martínez ◽  
Alejandro Zepeda ◽  
Alberto Ordaz ◽  
Luis A. Sánchez-Catzin ◽  
Zaira D. Estrada-Díaz ◽  
...  

This study present for first time the application of microrespirometric method to evaluate the effect of nanomaterial on biological process.


Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 55
Author(s):  
M. Jordán ◽  
J. Jordá ◽  
F. Pardo ◽  
M. Montero

A method for quantitative mineralogical analysis by ATR-FTIR [1] has been used first time for analysis of historical mortars. Mixtures of different minerals and gypsum were used in order to measure the minimum band intensity that must be considered for calculations and the detection limit. In this way, the molar absorptivity coefficient in the Lambert–Beer law and the components of a mixture in mol percentage can be calculated. The GAMS equation modeling environment and the NLP solver CONOPT (©ARKI Consulting and Development) were used to correlate the experimental data in the samples considered. The characterization of the vernacular mortars by FTIR analysis identifies the predominant minerals of the samples, and in conjunction with XRF and XRD, shows the exact composition of historical mortars, which will optimize the restoration and conservation of monuments, preserving our heritage.


2019 ◽  
Author(s):  
Erick Nyakundi Ondari ◽  
Samuel Gichaba Omwenga ◽  
Nalini Madanagopal

Abstract Our previous findings showed that amines from Tridax procumbens (Family: Asteraceae) were responsible for the synthesis of silver nanoparticles. T. procumbens is a weed plant with rich source of medicinal compounds. In the current work, we studied the initial characterization of bioactive compounds by LC-MS, an essential tool for the characterization and identification of low molecular compounds. Further the isolated compound was investigated for silver nanoparticle synthesis. The leaf extracts examined revealed many novel amine derivative compounds reported for the first time mainly belonging to the group of free amines: n-Pentylhydrazine hydrochloride, 2-Nitrobenzenesulfonyl chloride, 1,7-Dichlorooctamethyltetrasiloxane, 5-Chloro-1,2,4-trihydroxybenzene, 3-Chloro-2-hydroxy-5-(trifluoromethyl)pyridine and 2-(Diphenylphosphino) ethyltriethoxysilane and conjugated amines: 5-Methoxy-diisopropyltryptamine, 4-Chlorophenoxyacetic acid, Diphenhydramine, Erucamide, n(4-((2-(2,5-dimethoxybenzylidene)hydrazino)carbonyl)ph)-4-me-benzenesulfonamide and 1,3,5-Trithia-2,4,6-tristannacyclohexane, 2,2,4,4,6,6-hexamethyl. Characterization by UV-Vis spectra, XRD, EDX and TEM revealed well separated spherical shaped AgNPs size ranging 8-50 nm. These findings suggest that further work could be extended to isolate and elucidate the structures of the identified molecules using powerful instruments such as HPLC-MS, HPLC-NMR and high resolution-MS (HR-MS). Further biotechnological approaches towards synthesis of novel metals will be enhanced to promote green chemistry technology adoption for the synthesis of nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document