Expanding the scope of enzymatic carboligation reactions in flow-mode: production of optically active tertiary alcohols with packed-bed micro-bioreactors

2014 ◽  
Vol 16 (8) ◽  
pp. 3904-3915 ◽  
Author(s):  
P. P. Giovannini ◽  
O. Bortolini ◽  
A. Cavazzini ◽  
R. Greco ◽  
G. Fantin ◽  
...  

A packed-bed microreactor functionalized with acetylacetoin synthase effectively produces valuable chiral tertiary alcohols under continuous-flow conditions via umpolung catalysis.

2013 ◽  
Vol 149 ◽  
pp. 367-374 ◽  
Author(s):  
Jun Wang ◽  
Shuang-Shuang Gu ◽  
Hong-Sheng Cui ◽  
Liu-Qing Yang ◽  
Xiang-Yang Wu

Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2864
Author(s):  
Zsanett Szécsényi ◽  
Ferenc Fülöp ◽  
Sándor B. Ötvös

Bismuth subnitrate is reported herein as a simple and efficient catalyst for the atom-economical synthesis of methyl ketones via Markovnikov-type alkyne hydration. Besides an effective batch process under reasonably mild conditions, a chemically intensified continuous flow protocol was also developed in a packed-bed system. The applicability of the methodologies was demonstrated through hydration of a diverse set of terminal acetylenes. By simply switching the reaction medium from methanol to methanol-d4, valuable trideuteromethyl ketones were also prepared. Due to the ready availability and nontoxicity of the heterogeneous catalyst, which eliminated the need for any special additives and/or harmful reagents, the presented processes display significant advances in terms of practicality and sustainability.


1985 ◽  
Vol 50 (10) ◽  
pp. 2122-2133 ◽  
Author(s):  
Jindřich Zahradník ◽  
Marie Fialová ◽  
Jan Škoda ◽  
Helena Škodová

An experimental study was carried out aimed at establishing a data base for an optimum design of a continuous flow fixed-bed reactor for biotransformation of ammonium fumarate to L-aspartic acid catalyzed by immobilized cells of the strain Escherichia alcalescens dispar group. The experimental program included studies of the effect of reactor geometry, catalytic particle size, and packed bed arrangement on reactor hydrodynamics and on the rate of substrate conversion. An expression for the effective reaction rate was derived including the effect of mass transfer and conditions of the safe conversion-data scale-up were defined. Suggestions for the design of a pilot plant reactor (100 t/year) were formulated and decisive design parameters of such reactor were estimated for several variants of problem formulation.


2021 ◽  
Vol 50 (7) ◽  
pp. 2493-2500
Author(s):  
Sara Rojas ◽  
Jorge A. R. Navarro ◽  
Patricia Horcajada

A defective Metal-Organic Frameworks as an improved material for the construction of a fixed-bed system working under continuous flow conditions for the removal of the emerging contaminant atenolol.


Tetrahedron ◽  
2021 ◽  
pp. 132305
Author(s):  
Harry R. Smallman ◽  
Jamie A. Leitch ◽  
Tom McBride ◽  
Steven V. Ley ◽  
Duncan L. Browne

Author(s):  
Paolo Zardi ◽  
Michele Maggini ◽  
Tommaso Carofiglio

AbstractThe post-functionalization of porphyrins through the bromination in β position of the pyrrolic rings is a relevant transformation because the resulting bromoderivatives are useful synthons to covalently link a variety of chemical architectures to a porphyrin ring. However, single bromination of porphyrins is a challenging reaction for the abundancy of reactive β-pyrrolic positions in the aromatic macrocycle. We herein report a synthetic procedure for the efficient preparation of 2-bromo-5,10,15,20-tetraphenylporphyrin (1) under continuous flow conditions. The use of flow technology allows to reach an accurate control over critical reaction parameters such as temperature and reaction time. Furthermore, by performing the optimization process through a statistical DoE (Design of Experiment) approach, these parameters could be properly adjusted with a limited number of experiments. This process led us to a better understanding of the relevant factors that govern porphyrins monobromination and to obtain compound 1 with an unprecedent 80% yield.


Sign in / Sign up

Export Citation Format

Share Document