Selection of aptamers specific for glycated hemoglobin and total hemoglobin using on-chip SELEX

Lab on a Chip ◽  
2015 ◽  
Vol 15 (2) ◽  
pp. 486-494 ◽  
Author(s):  
Hsin-I Lin ◽  
Ching-Chu Wu ◽  
Ching-Hsuan Yang ◽  
Ko-Wei Chang ◽  
Gwo-Bin Lee ◽  
...  

Selection of blood glycated hemoglobin (HbA1c)- and total hemoglobin (Hb)-specific single-stranded DNA aptamers was performed on a microfluidic chip to continuously and automatically carry out multiple rounds of systematic evolution of ligands by exponential enrichment (SELEX) processes.

2003 ◽  
Vol 102 (1) ◽  
pp. 15-22 ◽  
Author(s):  
Chenglong Wang ◽  
Ming Zhang ◽  
Guang Yang ◽  
Dajing Zhang ◽  
Hongmei Ding ◽  
...  

Lab on a Chip ◽  
2017 ◽  
Vol 17 (1) ◽  
pp. 178-185 ◽  
Author(s):  
Xiaohui Liu ◽  
Hui Li ◽  
Wenchao Jia ◽  
Zhu Chen ◽  
Danke Xu

We developed an efficient and fast method based on a protein microarray integrated with a microfluidic chip for the process of SELEX (systematic evolution of ligands by exponential enrichment).


Author(s):  
D. A. Belinskaya ◽  
Yu. V. Chelusnova ◽  
V. V. Abzianidze ◽  
N. V. Goncharov

Poisoning with organophosphorus compounds occupy one of the leading places in exotoxicosis. At the first stage, the detoxification of organophosphates can be provided with the help of DNA or RNA aptamers that bind the poison in the bloodstream. Currently, the main method of searching for aptamers is the experimental method of systematic evolution of ligands by exponential enrichment (SELEX). In the process of aptamer selection, the target molecule must be immobilized via the streptavidin-biotin complex. Since the poison molecule is small in size, to increase its availability for binding to aptamer, it is necessary to use a spacer between organophosphorus compounds and biotin. The aim of this work was to optimize the selection of aptamers for organophosphorus compounds by increasing the availability of a poison molecule immobilized via the streptavidin-biotin complex on the example of paraoxon. For this purpose, three spacers between organophosphorus compounds and biotin were tested using molecular modeling methods: three links of polyethylene glycol (3-PEG), four links of polyethylene glycol (4-PEG) and aminohexyl. The conformation of the biotinylated paraoxon complex with streptavidin and the interaction of paraoxon with the binding fragment of the aptamer were modeled using molecular docking and molecular dynamics methods. The ability of biotinylated paraoxon to bind to the aptamer has been evaluated by analyzing the surface area of the paraoxon available to the solvent, as well as by calculating the free binding energies. It has been shown that only in the case of aminohexyl immobilized paraoxon can contact the aptamer. At the final stage, the synthesis of paraoxon bound to biotin via aminohexyl was carried out.


2018 ◽  
Vol 6 (12) ◽  
pp. 3152-3159 ◽  
Author(s):  
Mei Liu ◽  
Tong Yang ◽  
Zhongsi Chen ◽  
Zhifei Wang ◽  
Nongyue He

Aptamers are single-stranded DNA or RNA oligonucleotides selected by systematic evolution of ligands by exponential enrichment (SELEX), which show great potential in the diagnosis and personalized therapy of cancers, due to their specific advantages over antibodies.


2013 ◽  
Vol 11 (3) ◽  
pp. 566-570 ◽  
Author(s):  
Mohsen Ebrahimi ◽  
Hossein Hamzeiy ◽  
Jaleh Barar ◽  
Abolfazl Barzegari ◽  
Yadollah Omidi

2021 ◽  
pp. 100-103
Author(s):  
A.V. Blagodatova ◽  
◽  
K.V. Kochkina ◽  
M.A. Komarova ◽  
N.Y. Trofina ◽  
...  

The aim of the research. To obtain aptamers-inhibitors of platelet glycoprotein IIb / IIIa receptors, blocking platelet aggregation. Material and methods. Th e selection of aptamers for IIb / IIIa receptors of platelets was carried out according to the SELEX method (Systematic Evolution of Ligands by Exponential Enrichment), modifi ed to select aptamers for a specifi c epitope. Th e method allows selection and in vitro evolution of aptamers with selectivity to a specifi c target from a large library of oligonucleotides. Th e affi nity of aptamers for platelet IIb / IIIa receptors was determined using fl ow cytometry. Results. Pools of aptamers of aptamers with high affi nity for IIb / IIIa platelet receptors were obtained. Th e study of the antiaggregation properties of the pools with the best binding showed that platelet aggregation was minimal when using the aptamers from the pool of the 5th round of selection. Th us, the aptamers of this pool have the greatest potential to be used as an analogue of a synthetic peptide that blocks thromboaggregation. Aptamers from this pool were taken for sequencing in order to obtain sequences of aptamers with the best antiaggregatory properties. Conclusion. Pools of aptamers with high affi nity for IIb / IIIa receptors of platelets and anticoagulant activity were obtained.


2020 ◽  
Vol 25 (9) ◽  
pp. 1087-1093
Author(s):  
Hamideh Sepehri Zarandi ◽  
Mandana Behbahani ◽  
Hassan Mohabatkar

Nucleic acid aptamers that specifically bind to other molecules are mostly obtained through the systematic evolution of ligands by exponential enrichment (SELEX). Because SELEX is a time-consuming procedure, the in silico design of specific aptamers has recently become a progressive approach. HIV-1 surface glycoprotein gp120, which is involved in the early stages of HIV-1 infection, is an attractive target for RNA and DNA aptamer selection. In this study, four single-stranded DNA aptamers, referred to as HD2, HD3, HD4, and HD5, that had the ability of HIV-1 inhibition were designed in silico. In a proposed non-SELEX approach, some parts of the B40 aptamer sequence, which interacted with gp120, were isolated and considered as a separate aptamer sequence. Then, to obtain the best docking scores of the HDOCK server and Hex software, some modifications, insertions, and deletions were applied to each selected sequence. Finally, the cytotoxicity and HIV inhibition of the selected aptamers were evaluated experimentally. Results demonstrated that the selected aptamers could inhibit HIV-1 infection by up to 80%, without any cytotoxicity. Therefore, this new non-SELEX approach could be considered a simple, fast, and efficient method for aptamer selection.


Sign in / Sign up

Export Citation Format

Share Document