Graphene and graphene oxide: advanced membranes for gas separation and water purification

2015 ◽  
Vol 2 (5) ◽  
pp. 417-424 ◽  
Author(s):  
Quan Xu ◽  
Hong Xu ◽  
Jiarui Chen ◽  
Yunzu Lv ◽  
Chenbo Dong ◽  
...  

Advanced membrane systems with excellent permeance are important for controllable separation processes, such as gas separation and water purification.

ChemInform ◽  
2015 ◽  
Vol 46 (30) ◽  
pp. no-no
Author(s):  
Quan Xu ◽  
Hong Xu ◽  
Jiarui Chen ◽  
Yunzu Lv ◽  
Chenbo Dong ◽  
...  

Author(s):  
C.E. Voegele-Kliewer ◽  
A.D. McMaster ◽  
G.W. Dirks

Materials other than polymers, e.g. ceramic silicates, are currently being investigated for gas separation processes. The permeation characteristics of one such material, Vycor (Corning Glass #1370), have been reported for the separation of hydrogen from hydrogen iodide. This paper will describe the electron microscopy techniques applied to reveal the porous microstructure of a Vycor membrane. The application of these techniques has led to an increased understanding in the relationship between the substructure and the gas transport properties of this material.


Physchem ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 176-188
Author(s):  
Gregor Lipinski ◽  
Markus Richter

Efficient and environmentally responsible use of resources requires the development and optimization of gas separation processes. A promising approach is the use of liquids that are designed for specific tasks, e.g., the capture of carbon dioxide or other greenhouse gases. This requires an accurate determination of gas solubilities for a broad range of temperatures and pressures. However, state of the art measurement techniques are often very time consuming or exhibit other pitfalls that prevent their use as efficient screening tools. Here, we show that the application of Raman spectroscopy through a compact measuring system can simplify data acquisition for the determination of gas solubilities in liquids. To demonstrate that this approach is expedient, we determined gas solubilities of carbon dioxide in water for three isotherms T = (288.15, 293.15, 298.15) K over a pressure range from p = (0.5–5) MPa and in three imidazolium-based ionic liquids for one isotherm T = 298.15 K at pressures from p = (0.1–5) MPa. When compared to data in the literature, all results are within the reported uncertainties of the measurement techniques involved. The developed analysis method eliminates the need for a lengthy volume or mass calibration of the sample prior to the measurements and, therefore, allows for fast screening of samples, which can help to advance gas separation processes in scientific and industrial applications.


2017 ◽  
Vol 5 (39) ◽  
pp. 20860-20866 ◽  
Author(s):  
Mahdi Fathizadeh ◽  
Huynh Ngoc Tien ◽  
Konstantin Khivantsev ◽  
Jung-Tsai Chen ◽  
Miao Yu

We demonstrated for the first time that inkjet printing can be a low-cost, easy, fast, and scalable method for depositing ultrathin (7.5–60 nm) uniform graphene oxide (GO) nanofiltration membranes on polymeric supports for highly effective water purification.


2012 ◽  
Vol 44 ◽  
pp. 1991-1992
Author(s):  
L.A. Neves ◽  
N. Barreto ◽  
J.C. Crespo ◽  
I.M. Coelhoso

2017 ◽  
Vol 174 ◽  
pp. 392-399 ◽  
Author(s):  
Shunli Liu ◽  
Fang Yao ◽  
Olayinka Oderinde ◽  
Zhihong Zhang ◽  
Guodong Fu

2021 ◽  
Author(s):  
Richard P Rode ◽  
Saeed Moghaddam

Membrane biofouling has inhibited permselective separation processes for decades, requiring frequent membrane backwash treatment or replacement to maintain efficacy. However, frequent treatment is not viable for devices with a continuous blood flow such as a wearable or implantable dialyzer. In this study, the biofouling characteristics of a highly hemocompatible graphene oxide (GO) membrane developed through a novel self-assembly process is studied in a protein-rich environment and compared with performance of a state-of-the-art commercial polymer membrane dialyzer. The studies are conducted in phosphate-buffered saline (PBS) environment using human serum albumin (HSA), which represents 60% of the blood protein, at the nominal blood protein concentration of 1 g L-1. Protein aggregation on the membrane surface is evaluated by monitoring the change in the membrane flux and SEM imaging. The GO membrane water flux declined only ~10% over a week-long test whereas the polymer membrane flux declined by 50% during the same period. The SEM images show that HSA primarily aggerates over the graphitic regions of nanoplatelets, away from the charged hydrophilic edges. This phenomenon leaves the open areas of the membrane formed between the nanoplatelets edges, through which the species pass, relatively intact. In contrast, HSA completely plugs the polymer membrane pores resulting in a steady decline in membrane permeability.


2021 ◽  
Author(s):  
Wei Liu ◽  
Ming Yang ◽  
Jing Liu ◽  
Meijia Yang ◽  
Jing Li ◽  
...  

Abstract The unique magnetic, electronic and optical features derived from their unpaired electrons have made radical polymers an attractive material platform for various applications. Here, we report solution-processable radical polymer membranes with multi-level porosities and study the impact of free radicals on important membrane separation processes including solar vapor generation, hydrogen separation and CO2 capture. The radical polymer is a supreme light absorber over the full solar irradiation range with sufficient water transport channels, leading to a highly efficient solar evaporation membrane. In addition, the radical polymer with micropores and adjustable functional groups are broad-spectrum gas separation membranes for both hydrogen separation and CO2 capture. First principle calculations indicate that the conjugated polymeric network bearing radicals is more chemically reactive with CO2, compared with H2, N2 and CH4. This is evidenced by a high CO2 permeability in gas separation membranes made of the conjugated radical polymer.


Sign in / Sign up

Export Citation Format

Share Document