Modification of tungsten trioxide with ionic liquid for enhanced photocatalytic performance

RSC Advances ◽  
2014 ◽  
Vol 4 (71) ◽  
pp. 37556-37562 ◽  
Author(s):  
Jingjing Liu ◽  
Suiqi Han ◽  
Jia Li ◽  
Jun Lin

Ionic liquid (IL) modification endows the surface of WO3 with a stronger electron-trapping capability, which effectively inhibits the recombination of electron–hole pairs and thus enhances photocatalysis.

RSC Advances ◽  
2020 ◽  
Vol 10 (46) ◽  
pp. 27538-27551
Author(s):  
Qi Wang ◽  
Bihan Li ◽  
Ping Zhang ◽  
Wenming Zhang ◽  
Xiaoru Hu ◽  
...  

BPNs in the WO3–BPNs heterojunction acted as a co-catalyst to enhance photo-generated electron–hole pairs separation and improve degradation performance.


2020 ◽  
Vol 10 (9) ◽  
pp. 3238
Author(s):  
Min Liu ◽  
Guangxin Wang ◽  
Panpan Xu ◽  
Yanfeng Zhu ◽  
Wuhui Li

In this study, the Ag3PO4/SnO2 heterojunction on carbon cloth (Ag3PO4/SnO2/CC) was successfully fabricated via a facile two-step process. The results showed that the Ag3PO4/SnO2/CC heterojunction exhibited a remarkable photocatalytic performance for the degradation of Rhodamine B (RhB) and methylene blue (MB), under visible light irradiation. The calculated k values for the degradation of RhB and MB over Ag3PO4/SnO2/CC are 0.04716 min−1 and 0.04916 min−1, which are higher than those calculated for the reactions over Ag3PO4/SnO2, Ag3PO4/CC and SnO2/CC, respectively. The enhanced photocatalytic activity could mainly be attributed to the improved separation efficiency of photogenerated electron-hole pairs, after the formation of the Ag3PO4/SnO2/CC heterojunction. Moreover, carbon cloth with a large specific surface area and excellent conductivity was used as the substrate, which helped to increase the contact area of dye solution with photocatalysts and the rapid transfer of photogenerated electrons. Notably, when compared with the powder catalyst, the catalysts supported on carbon cloth are easier to quickly recycle from the pollutant solution, thereby reducing the probability of recontamination.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3948
Author(s):  
Lingfang Qiu ◽  
Zhiwei Zhou ◽  
Mengfan Ma ◽  
Ping Li ◽  
Jinyong Lu ◽  
...  

Novel visible-light responded aluminosilicophosphate-5 (SAPO-5)/g-C3N4 composite has been easily constructed by thermal polymerization for the mixture of SAPO-5, NH4Cl, and dicyandiamide. The photocatalytic activity of SAPO-5/g-C3N4 is evaluated by degrading RhB (30 mg/L) under visible light illumination (λ > 420 nm). The effects of SAPO-5 incorporation proportion and initial RhB concentration on the photocatalytic performance have been discussed in detail. The optimized SAPO-5/g-C3N4 composite shows promising degradation efficiency which is 40.6% higher than that of pure g-C3N4. The degradation rate improves from 0.007 min−1 to 0.022 min−1, which is a comparable photocatalytic performance compared with other g-C3N4-based heterojunctions for dye degradation. The migration of photo-induced electrons from g-C3N4 to the Al site of SAPO-5 should promote the photo-induced electron-hole pairs separation rate of g-C3N4 efficiently. Furthermore, the redox reactions for RhB degradation occur on the photo-induced holes in the g-C3N4 and Al sites in SAPO-5, respectively. This achievement not only improves the photocatalytic activity of g-C3N4 efficiently, but also broadens the application of SAPOs in the photocatalytic field.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2206
Author(s):  
Gaoqian Yuan ◽  
Gen Zhang ◽  
Kezhuo Li ◽  
Faliang Li ◽  
Yunbo Cao ◽  
...  

Loading a noble metal on Bi4Ti3O12 could enable the formation of the Schottky barrier at the interface between the former and the latter, which causes electrons to be trapped and inhibits the recombination of photoelectrons and photoholes. In this paper, AgPt/Bi4Ti3O12 composite photocatalysts were prepared using the photoreduction method, and the effects of the type and content of noble metal on the photocatalytic performance of the catalysts were investigated. The photocatalytic degradation of rhodamine B (RhB) showed that the loading of AgPt bimetallic nanoparticles significantly improved the catalytic performance of Bi4Ti3O12. When 0.10 wt% noble metal was loaded, the degradation rate for RhB of Ag0.7Pt0.3/Bi4Ti3O12 was 0.027 min−1, which was respectively about 2, 1.7 and 3.7 times as that of Ag/Bi4Ti3O12, Pt/Bi3Ti4O12 and Bi4Ti3O12. The reasons may be attributed as follows: (i) the utilization of visible light was enhanced due to the surface plasmon resonance effect of Ag and Pt in the visible region; (ii) Ag nanoparticles mainly acted as electron acceptors to restrain the recombination of photogenerated electron-hole pairs under visible light irradiation; and (iii) Pt nanoparticles acted as electron cocatalysts to further suppress the recombination of photogenerated electron-hole pairs. The photocatalytic performance of Ag0.7Pt0.3/Bi4Ti3O12 was superior to that of Ag/Bi4Ti3O12 and Pt/Bi3Ti4O12 owing to the synergistic effect between Ag and Pt nanoparticles.


2012 ◽  
Vol 554-556 ◽  
pp. 502-506 ◽  
Author(s):  
Li Wei Wang ◽  
Terry A. Egerton

Chromium doped rutile TiO2was synthesized by either co-precipitation or impregnation (surface-doping) and characterized by XRD and reflectance spectroscopy. Chromium addition did not change the TiO2structure nor did the structure of the co-precipitated products differ from that of the impregnated samples. However, chromium doping moved the absorption of both sets of products into the visible and significantly affected the TiO2photocatalytic activity for isopropanol (IPA) oxidation. At high chromium concentrations the photoactivity of the co-precipitated samples was reduced by a larger amount than that of the impregnated samples; this was attributed to a higher concentration of Cr3+ions in the rutile lattice. Unexpectedly, increased photoactivity was measured for low Cr levels of surface-doped rutile. This may be caused by increased electron-trapping, at surface Cr6+ions, and correspondingly reduced, electron-hole recombination.


2019 ◽  
Vol 238 ◽  
pp. 147-150 ◽  
Author(s):  
Dongmei Ma ◽  
Huanhuan Liu ◽  
Jiao Huang ◽  
Junbo Zhong ◽  
Jianzhang Li ◽  
...  

2018 ◽  
Vol 32 (12) ◽  
pp. e4596 ◽  
Author(s):  
Qiuli Nan ◽  
Shuang Huang ◽  
Yuming Zhou ◽  
Shuo Zhao ◽  
Man He ◽  
...  

2018 ◽  
Vol 281 ◽  
pp. 848-853
Author(s):  
Ling Fang Qiu ◽  
Xiao Bin Qiu ◽  
Zhi Wei Zhou ◽  
Shu Wang Duo

Graphitic carbon nitride is a promising photocatalyst for environmental purification, but the photocatalytic performance is limited significantly due to its narrow visible-light adsorption and high photo-reduced electron-hole recombination rate. This work developed a novel way to overcome the two defects and obtained obvious effect. CoAPO-5 was used to broaden visible-light adsorption range by conducting g-C3N4/CoAPO-5 binary composite. In further, rGO was integrated into the binary system to form novel ternary composite. rGO performs as a electron mediator, which can inhibit photo-reduced electron-hole recombination efficiently. The samples were characterized by XRD, SEM, PL, IR and DRS. The photocatalytic performances for degrading RhB (10mg/L) indicated that g-C3N4/CoAPO-5/rGO have much higher activity than g-C3N4/CoAPO-5 because of synergistic effect. When the doping content of rGO in g-C3N4/CoAPO-5 was 0.5%, the degradation efficiency was improved by 14%.


Sign in / Sign up

Export Citation Format

Share Document