Photo-mechanical azobenzene cocrystals and in situ X-ray diffraction monitoring of their optically-induced crystal-to-crystal isomerisation

2014 ◽  
Vol 5 (8) ◽  
pp. 3158-3164 ◽  
Author(s):  
Oleksandr S. Bushuyev ◽  
T. Christopher Corkery ◽  
Christopher J. Barrett ◽  
Tomislav Friščić

We demonstrate the first supramolecular cocrystallisation strategy for generating crystalline azobenzene materials with a range of photo-mechanical and thermochemical properties: from those that exhibit isomerisation without any change in crystal shape to those that undergo a crystal-to-crystal cis–trans isomerisation accompanied by large scale bending.

2013 ◽  
Vol 1544 ◽  
Author(s):  
Marco Sommariva ◽  
Harald van Weeren ◽  
Olga Narygina ◽  
Jan-André Gertenbach ◽  
Christian Resch ◽  
...  

ABSTRACTThe sorption processes for hydrogen and carbon dioxide are of considerable, and growing interest, particularly due to their relevance to a society that seeks to replace fossil fuels with a more sustainable energy source. X-ray diffraction allows a unique perspective for studying structural modifications and reaction mechanisms that occur when gas and solid interact. The fundamental challenge associated with such a study is that experiments are conducted while the solid sample is held under a gas pressure. To date in-situ high gas pressure studies of this nature have typically been undertaken at large-scale facilities such as synchrotrons or on dedicated laboratory instruments. Here we report high-pressure XRD studies carried out on a multi-purpose diffractometer. To demonstrate the suitability of the equipment, two model studies were carried out, firstly the reversible hydrogen cycling over LaNi5, and secondly the structural change that occurs during the decomposition of ammonia borane that results in the generation of hydrogen gas in the reaction chamber. The results have been finally compared to the literature. The study has been made possible by the combination of rapid X-ray detectors with a reaction chamber capable of withstanding gas pressures up to 100 bar and temperatures up to 900 °C.


2014 ◽  
Vol 996 ◽  
pp. 417-423 ◽  
Author(s):  
Arne Kromm ◽  
Thomas Kannengiesser

Results obtained from laboratory tests mostly need to be verified under fabrication conditions in order to incorporate design specifics (joint configuration and restraint), which effect the residual stress state considerably. For this purpose, multi-pass sub merged arc welding was performed in a special large-scale testing facility. The impact of varying interpass temperatures could be proven in-situ by means of a pronounced stress accumulation during welding and subsequent heat treatment accompanied by stress determination using X-ray diffraction.


2007 ◽  
Vol 558-559 ◽  
pp. 943-947 ◽  
Author(s):  
E. Otterstein ◽  
R. Nicula ◽  
J. Bednarčík ◽  
M. Stir ◽  
E. Burkel

Quasicrystals are aperiodic long-range ordered solids with a high potential for many modern applications. Interest is nowadays paid to the development of economically viable large-scale synthesis procedures of quasicrystalline materials involving solid-state transformations. The kinetics of the high-temperature phase transition from the complex ω-phase to the icosahedral quasicrystalline (iQC) ψ-phase in AlCuFe nanopowders was here examined by in-situ time-resolved X-ray diffraction experiments using synchrotron radiation. In-situ XRD experiments will allow insight on the influence of uniaxial applied pressure on the kinetics of phase transitions leading to the formation of single-phase QC nanopowders and further contribute to the optimization of sintering procedures for nano-quasicrystalline AlCuFe alloy powders.


2012 ◽  
Vol 22 (7) ◽  
pp. 3035 ◽  
Author(s):  
Jie Shu ◽  
Miao Shui ◽  
Dan Xu ◽  
Yuanlong Ren ◽  
Dongjie Wang ◽  
...  

2018 ◽  
Author(s):  
Tomislav Stolar ◽  
Stipe Lukin ◽  
Martina Tireli ◽  
Irena Sović ◽  
Bahar Karadeniz ◽  
...  

<p>We demonstrate a controllable mechanochemical synthesis of cocrystal polymorphs of ascorbic acid (vitamin C) and nicotinamide (vitamin B3) on different scales and without using bulk solvents. Next to the previously described polymorph of the 1:1 cocrystal, which is one of the first cocrystals approved for human consumption, we report here a new, thermodynamically more stable polymorph detected during in situ synchrotron powder X-ray diffraction monitoring of milling reactions. The new polymorph is currently available exclusively by mechanochemical synthesis, and its crystal structure was determined from powder X-ray diffraction data. Laboratory in situ monitoring by Raman spectroscopy provided direct insight into the cocrystals formation and was further used to optimize the manufacturing procedure. Sub-gram synthesis using laboratory mixer mill was transferred to the 10 g scale on a planetary ball mill and continuous manufacturing using a twin-screw extruder. Both cocrystal polymorphs perform excellently in tableting, thus alleviating the notoriously poor compactible properties of vitamin C, while the mechanochemical cocrystallization does not harm its antioxidant properties.<b></b></p>


2010 ◽  
Vol 114 (21) ◽  
pp. 7179-7188 ◽  
Author(s):  
Gengsheng Weng ◽  
Guangsu Huang ◽  
Liangliang Qu ◽  
Yijing Nie ◽  
Jinrong Wu

2006 ◽  
Vol 503-504 ◽  
pp. 193-200 ◽  
Author(s):  
Helena Van Swygenhoven

Large scale computer simulations suggest that in nanocrystalline metals grain boundaries act as source and sink for dislocations. This suggestion has been the motivation for developing a new in-situ X-ray diffraction technique that allow peak profile analysis of several Bragg diffraction peaks during tensile deformation. Synergies between simulations and experiments are discussed including new applications of the in-situ technique.


2018 ◽  
Author(s):  
Tomislav Stolar ◽  
Stipe Lukin ◽  
Martina Tireli ◽  
Irena Sović ◽  
Bahar Karadeniz ◽  
...  

<p>We demonstrate a controllable mechanochemical synthesis of cocrystal polymorphs of ascorbic acid (vitamin C) and nicotinamide (vitamin B3) on different scales and without using bulk solvents. Next to the previously described polymorph of the 1:1 cocrystal, which is one of the first cocrystals approved for human consumption, we report here a new, thermodynamically more stable polymorph detected during in situ synchrotron powder X-ray diffraction monitoring of milling reactions. The new polymorph is currently available exclusively by mechanochemical synthesis, and its crystal structure was determined from powder X-ray diffraction data. Laboratory in situ monitoring by Raman spectroscopy provided direct insight into the cocrystals formation and was further used to optimize the manufacturing procedure. Sub-gram synthesis using laboratory mixer mill was transferred to the 10 g scale on a planetary ball mill and continuous manufacturing using a twin-screw extruder. Both cocrystal polymorphs perform excellently in tableting, thus alleviating the notoriously poor compactible properties of vitamin C, while the mechanochemical cocrystallization does not harm its antioxidant properties.<b></b></p>


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Sign in / Sign up

Export Citation Format

Share Document