High-water-content graphene oxide/polyvinyl alcohol hydrogel with excellent mechanical properties

2014 ◽  
Vol 2 (27) ◽  
pp. 10508-10515 ◽  
Author(s):  
Yifu Huang ◽  
Mingqiu Zhang ◽  
Wenhong Ruan

Boron-cross-linked graphene oxide/polyvinyl alcohol (B-GO/PVA) hydrogels with high-water-content and excellent mechanical properties are prepared by freeze/thaw and boron cross-linking methods.

2018 ◽  
Vol 24 (8) ◽  
pp. 843-854 ◽  
Author(s):  
Weiguo Xu ◽  
Shujun Dong ◽  
Yuping Han ◽  
Shuqiang Li ◽  
Yang Liu

Hydrogels, as a class of materials for tissue engineering and drug delivery, have high water content and solid-like mechanical properties. Currently, hydrogels with an antibacterial function are a research hotspot in biomedical field. Many advanced antibacterial hydrogels have been developed, each possessing unique qualities, namely high water swellability, high oxygen permeability, improved biocompatibility, ease of loading and releasing drugs and structural diversity. In this article, an overview is provided on the preparation and applications of various antibacterial hydrogels. Furthermore, the prospects in biomedical researches and clinical applications are predicted.


2001 ◽  
Vol 26 (5) ◽  
pp. 436-440 ◽  
Author(s):  
M. KOBAYASHI ◽  
J. TOGUCHIDA ◽  
M. OKA

The main problem in tendon repair is adhesion formation between the tendon and surrounding tissue. To prevent this, we have developed adhesion preventive shields using polyvinyl alcohol hydrogel (PVA-H) with 90% water content. This implant experiment used the deep flexor tendon of the 3rd toe of the domestic fowl. Injured tendons shielded with PVA-H healed within about 3 weeks without adhesion to the surrounding tissues. Neither breakage of the PVA-H shield itself nor infection or degeneration in the surrounding tissue was observed. These results show that tendon is capable of intrinsic repair, and was able to regenerate using synovial nutrition through the PVA-H. The high water content of PVA-H may be clinically useful and applicable to adhesion preventive shields for tendon repair.


2010 ◽  
Vol 88 (3) ◽  
pp. 173-184 ◽  
Author(s):  
Jung Kwon Oh

Microgels/nanogels (micro/nanogels) are promising drug-delivery systems (DDS) because of their unique properties, including tunable chemical and physical structures, good mechanical properties, high water content, and biocompatibility. They also feature sizes tunable to tens of nanometers, large surface areas, and interior networks. These properties demonstrate the great potential of micro/nanogels for drug delivery, tissue engineering, and bionanotechnology. This mini-review describes the current approaches for the preparation and engineering of effective micro/nanogels for drug-delivery applications. It emphasizes issues of degradability and bioconjugation, as well as loading/encapsulation and release of therapeutics from customer-designed micro/nanogels.


2013 ◽  
Vol 405-408 ◽  
pp. 49-56
Author(s):  
Sheng Chuan Liu ◽  
Gui Ling Ding ◽  
Gang Chen

This project is aiming at the high water content clay in seasonally frozen ground region, based on the expressway program in Heilongjiang province. By applying laboratory test, field test, field monitoring and theoretical analysis, research has been proposed to understand the deformation law and long-term performance of high water content clay subgrade in freeze-thaw condition. From the comparison test of soil and soil treated with lime, road properties of high water content clay has been found out. It is a very necessary and effective method using lime to treat the high water content clay in subgrade construction. Laboratory freeze-thaw experiments uncover the strength weakening law of soil treated with lime. With theoretical analysis and numerical calculation, the interaction between clayey subgrade and pavement structure layer under effect of vehicle dynamic load is analyzed. According to this result, control standards of subgrade frost heave in seasonally frozen ground region and subgrade resilience modulus in spring have been proposed.


2020 ◽  
Author(s):  
Sisi Lin ◽  
Guillermo Hernandez Ramirez

<p>Thaw-induced N<sub>2</sub>O emissions have been shown to account for 30-90% of N<sub>2</sub>O emissions in agricultural fields. Due to the climate change, increased precipitatio is expected in fall and winter seasons for certain regions. As a result, this would in turn enhance the thaw-induced N<sub>2</sub>O emissions and aggravate climate change. A mesocosm study was conducted to investigate N<sub>2</sub>O production and sources from soils under elevated soil moisture contents in response to a simulated fall-freeze-thaw cycle. Treatments included two levels of N addition (urea versus control) and two different management histories [with (SW) and without (CT) manure additions]. Our results showed that at least 92% of the N<sub>2</sub>O emissions during the study were produced during the simulated thawing across all treatments. The thaw-induced N<sub>2</sub>O emissions increased with increasing soil water content. The fall-applied urea increased the soil-derived N<sub>2</sub>O emissions during thawing, indicating an excessive mineralization of soil organic N. Compared to the CT soils, the SW soils induced more soil-derived N<sub>2</sub>O emissions. This could be because the SW soil had more easily decomposable organic matter which was likely due to historical manure additions. Regarding to the daily primed N<sub>2</sub>O fluxes, different soil water contents impacted the dynamics of daily priming effect. At the high water content, the soils experienced a shift in daily primed N<sub>2</sub>O fluxes from positive to negative and eventually back to positive throughout the simulated thawing, while the soils at lower water contents underwent positive primed fluxes in general. The shift in daily primed fluxes was probably driven by the preference of soil microbes on the labile N substrates. When the microbes switched from easily to moderately decomposed substrates (e.g., from dissolved organic N to plant residuals), they started to uptake inorganic N from the soil due to a relatively high C:N ratio of plant residuals. Therefore, a net N immobilization and negative primed N<sub>2</sub>O production occur in the short term in the soils at the high water content.</p>


Sign in / Sign up

Export Citation Format

Share Document