scholarly journals Novel olfactory ligands via terpene synthases

2015 ◽  
Vol 51 (35) ◽  
pp. 7550-7553 ◽  
Author(s):  
Sabrina Touchet ◽  
Keith Chamberlain ◽  
Christine M. Woodcock ◽  
David J. Miller ◽  
Michael A. Birkett ◽  
...  

A synthetic biology approach to the rational design of novel olfactory ligands is described.

2021 ◽  
Vol 186 (Supplement_1) ◽  
pp. 801-807
Author(s):  
Nathaniel A Young ◽  
Ryan L Lambert ◽  
Angela M Buch ◽  
Christen L Dahl ◽  
Jackson D Harris ◽  
...  

ABSTRACT Introduction Per- and polyfluoroalkyl substances (PFAS) are a class of synthetic compounds used industrially for a wide variety of applications. These PFAS compounds are very stable and persist in the environment. The PFAS contamination is a growing health issue as these compounds have been reported to impact human health and have been detected in both domestic and global water sources. Contaminated water found on military bases poses a potentially serious health concern for active duty military, their families, and the surrounding communities. Previous detection methods for PFAS in contaminated water samples require expensive and time-consuming testing protocols that limit the ability to detect this important global pollutant. The main objective of this work was to develop a novel detection system that utilizes a biological reporter and engineered bacteria as a way to rapidly and efficiently detect PFAS contamination. Materials and Methods The United States Air Force Academy International Genetically Engineered Machine team is genetically engineering Rhodococcus jostii strain RHA1 to contain novel DNA sequences composed of a propane 2-monooxygenase alpha (prmA) promoter and monomeric red fluorescent protein (mRFP). The prmA promoter is activated in the presence of PFAS and transcribes the mRFP reporter. Results The recombinant R. jostii containing the prmA promoter and mRFP reporter respond to exposure of PFAS by activating gene expression of the mRFP. At 100 µM of perfluorooctanoic acid, the mRFP expression was increased 3-fold (qRT-PCR). Rhodococcus jostii without exposure to PFAS compounds had no mRFP expression. Conclusions This novel detection system represents a synthetic biology approach to more efficiently detect PFAS in contaminated samples. With further refinement and modifications, a similar system could be readily deployed in the field around the world to detect this critical pollutant.


2013 ◽  
Vol 41 (5) ◽  
pp. 1159-1165 ◽  
Author(s):  
Shiksha Mantri ◽  
K. Tanuj Sapra

Realization of a functional artificial cell, the so-called protocell, is a major challenge posed by synthetic biology. A subsequent goal is to use the protocellular units for the bottom-up assembly of prototissues. There is, however, a looming chasm in our knowledge between protocells and prototissues. In the present paper, we give a brief overview of the work on protocells to date, followed by a discussion on the rational design of key structural elements specific to linking two protocellular bilayers. We propose that designing synthetic parts capable of simultaneous insertion into two bilayers may be crucial in the hierarchical assembly of protocells into a functional prototissue.


2016 ◽  
Vol 2 (9) ◽  
pp. 642-650 ◽  
Author(s):  
Grace Yim ◽  
Wenliang Wang ◽  
Maulik N. Thaker ◽  
Stephanie Tan ◽  
Gerard D. Wright

Author(s):  
Mauro F Rebelo ◽  
Luana F Afonso ◽  
Juliana A Americo ◽  
Lucas da Silva ◽  
José L B Neto ◽  
...  

The recent development of the CRISPR-Cas9-based gene drive has created the conditions to seriously consider this technology to solve one of the major environmental challenges in biodiversity conservation i.e. the control of invasive species. There is no efficient control method for golden mussel infestation available so far. Here we discuss the technical and economic feasibility of using a synthetic biology based approach to fight and control the invasive mussel Limnoperna fortunei in South American rivers and reservoirs.


Sign in / Sign up

Export Citation Format

Share Document