Self-terminated electrodeposition of iridium electrocatalysts

2015 ◽  
Vol 8 (12) ◽  
pp. 3557-3562 ◽  
Author(s):  
Sang Hyun Ahn ◽  
Haiyan Tan ◽  
Mareike Haensch ◽  
Yihua Liu ◽  
Leonid A. Bendersky ◽  
...  

This study details a “wet” atomic layer deposition process that uses potential modulation and H adsorption to terminate Ir deposition at high deposition overpotentials. The ultrathin Ir films match or exceed the best reported electrocatalytic activity for the oxygen evolution reaction (OER) and hydrogen production and oxidation reaction (HER and HOR) on bulk Ir electrodes.

2021 ◽  
Vol 52 (S2) ◽  
pp. 141-141
Author(s):  
Dedong Han ◽  
Huijin Li ◽  
Junchen Dong ◽  
Xiaobin Zhou ◽  
Qi Li ◽  
...  

ACS Omega ◽  
2018 ◽  
Vol 3 (11) ◽  
pp. 14567-14574 ◽  
Author(s):  
Mantu K. Hudait ◽  
Michael B. Clavel ◽  
Jheng-Sin Liu ◽  
Shuvodip Bhattacharya

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Linxing Meng ◽  
Jinlu He ◽  
Xiaolong Zhou ◽  
Kaimo Deng ◽  
Weiwei Xu ◽  
...  

AbstractVast bulk recombination of photo-generated carriers and sluggish surface oxygen evolution reaction (OER) kinetics severely hinder the development of photoelectrochemical water splitting. Herein, through constructing a vertically ordered ZnInS nanosheet array with an interior gradient energy band as photoanode, the bulk recombination of photogenerated carriers decreases greatly. We use the atomic layer deposition technology to introduce Fe-In-S clusters into the surface of photoanode. First-principles calculations and comprehensive characterizations indicate that these clusters effectively lower the electrochemical reaction barrier on the photoanode surface and promote the surface OER reaction kinetics through precisely affecting the second and third steps (forming processes of O* and OOH*) of the four-electron reaction. As a result, the optimal photoanode exhibits the high performance with a significantly enhanced photocurrent of 5.35 mA cm−2 at 1.23 VRHE and onset potential of 0.09 VRHE. Present results demonstrate a robust platform for controllable surface modification, nanofabrication, and carrier transport.


2019 ◽  
Vol 217 (8) ◽  
pp. 1900237
Author(s):  
Zhen Zhu ◽  
Saoussen Merdes ◽  
Oili M. E. Ylivaara ◽  
Kenichiro Mizohata ◽  
Mikko J. Heikkilä ◽  
...  

2011 ◽  
Vol 171 (1) ◽  
pp. 345-349 ◽  
Author(s):  
P.S. Maydannik ◽  
T.O. Kääriäinen ◽  
D.C. Cameron

2018 ◽  
Vol 57 (6S2) ◽  
pp. 06JF05 ◽  
Author(s):  
Muhammad Zeeshan Arshad ◽  
Kyung Jae Jo ◽  
Hyun Gi Kim ◽  
Sang Jeen Hong

Sign in / Sign up

Export Citation Format

Share Document