A facile approach to prepare Bi(OH)3 nanoflakes as high-performance pseudocapacitor materials

2015 ◽  
Vol 39 (8) ◽  
pp. 5927-5930 ◽  
Author(s):  
Wei Zhang ◽  
Xiaoxiong Huang ◽  
Yueyue Tan ◽  
Yilong Gao ◽  
Jianxiang Wu ◽  
...  

Bi(OH)3 nanoflakes deliver a specific capacitance of 888 F g−1 at a current density of 1 A g−1.

2016 ◽  
Vol 40 (8) ◽  
pp. 6881-6889 ◽  
Author(s):  
Cuiping Yu ◽  
Yan Wang ◽  
Jianfang Zhang ◽  
Xia Shu ◽  
Jiewu Cui ◽  
...  

Novel nanocomposite NiCo2O4/C-TNAs were synthesized for high-performance supercapacitors with a specific capacitance of 934.9 F g−1 at a current density of 2 A g−1.


2017 ◽  
Vol 20 (4) ◽  
pp. 197-204
Author(s):  
Weiliang Chen ◽  
Shuhua Pang ◽  
Zheng Liu ◽  
Zhewei Yang ◽  
Xin Fan ◽  
...  

Polypyrrole with hierarchical dendritic structures assembled with cauliflower-like structure of nanospheres, was synthesized by chemical oxidation polymerization. The structure of polyryrrole was characterized by Fourier transform infrared spectrometer and scanning electron microscopy. The electrochemical performance was performed on CHI660 electrochemical workstation. The results show that oxalic acid has a significant effect on morphology of PPy products. The hierarchical dendritic PPyOA(3) electrodes possess a large specific capacitance as high as 744 F/g at a current density of 0.2 A/g and could achieve a higher specific capacitance of 362 F/g even at a current density of 5.0 A/g. Moreover, the dendritic PPy products produce a large surface area on the electrode through the formation of the channel structure with their assembled cauliflower-like morphology, which facilitates the charge/electron transfer relative to the spherical PPy electrode. The spherical dendritic PPyOA(3) electrode has 58% retention of initial specific capacitance after 260 cycles. The as-prepared dendritic polypyrrole with high performance is a promsing electrode material for supercapacitor.


Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3588 ◽  
Author(s):  
Xiao-Ming Yue ◽  
Zhao-Yang An ◽  
Mei Ye ◽  
Zi-Jing Liu ◽  
Cui-Cui Xiao ◽  
...  

Coal-based porous materials for supercapacitors were successfully prepared using Taixi anthracite (TXA) by multi-stage activation. The characterization and electrochemical tests of activated carbons (ACs) prepared in different stages demonstrated that the AC from the third-stage activation (ACIII) shows good porous structures and excellent electrochemical performances. ACIII exhibited a fine specific capacitance of 199 F g−1 at a current density of 1 A g−1 in the three-electrode system, with 6 mol L−1 KOH as the electrolyte. The specific capacitance of ACIII remained 190 F g−1 even despite increasing the current density to 5 A g−1, indicating a good rate of electrochemical performance. Moreover, its specific capacitance remained at 98.1% of the initial value after 5000 galvanostatic charge-discharge (GCD) cycle tests at a current density of 1 A g−1, suggesting that the ACIII has excellent cycle performance as electrode materials for supercapacitors. This study provides a promising approach for fabricating high performance electrode materials from high-rank coals, which could facilitate efficient and clean utilization of high-rank coals.


RSC Advances ◽  
2016 ◽  
Vol 6 (13) ◽  
pp. 10520-10526 ◽  
Author(s):  
Qing Yang ◽  
Shuang-Yan Lin

Ultrathin nanosheet-based CoMoO4–NiMoO4 nanotubes were designed and synthesized by a hydrothermal treatment, which demonstrated a high specific capacitance of 751 F g−1 at a current density of 1 A g−1 and the excellent cycling ability.


RSC Advances ◽  
2015 ◽  
Vol 5 (3) ◽  
pp. 1680-1683 ◽  
Author(s):  
Li Zhang ◽  
Lei Chen ◽  
Bin Qi ◽  
Guocheng Yang ◽  
Jian Gong

Ordered TiO2@polyaniline nanorods exhibiting high specific capacitance were prepared by a simple method. The specific capacitance retention of the product is over 85% after 1000 charge and discharge cycles at a current density of 10 A g−1.


2019 ◽  
Vol 5 (3) ◽  
pp. 44 ◽  
Author(s):  
Jonghyun Choi ◽  
Camila Zequine ◽  
Sanket Bhoyate ◽  
Wang Lin ◽  
Xianglin Li ◽  
...  

In this work, nitrogen-doped activated carbon was produced from waste coffee powder using a two-step chemical activation process. Nitrogen doping was achieved by treating the coffee powder with melamine, prior to chemical activation. The produced nitrogen-doped carbon resulted in a very high surface area of 1824 m2/g and maintained a high graphitic phase as confirmed by Raman spectroscopy. The elemental composition of the obtained coffee-derived carbon was analyzed using X-ray photoelectron spectroscopy (XPS). The supercapacitor electrodes were fabricated using coffee-waste-derived carbon and analyzed using a three-electrode cell testing system. It was observed that nitrogen-doping improved the electrochemical performance of the carbon and therefore the charge storage capacity. The nitrogen-doped coffee carbon showed a high specific capacitance of 148 F/g at a current density of 0.5 A/g. The symmetrical coin cell device was fabricated using coffee-derived carbon electrodes to analyze its real-time performance. The device showed the highest specific capacitance of 74 F/g at a current density of 1 A/g. The highest energy and power density for the device was calculated to be 12.8 and 6.64 kW/kg, respectively. The stability test of the device resulted in capacitance retention of 97% after 10,000 cycles while maintaining its coulombic efficiency of 100%. These results indicate that the synthesized nitrogen-doped coffee carbon electrode could be used as a high-performance supercapacitor electrode for energy storage applications, and at the same time manage the waste generated by using coffee.


2015 ◽  
Vol 39 (11) ◽  
pp. 8430-8438 ◽  
Author(s):  
Mingming Yao ◽  
Zhonghua Hu ◽  
Yafei Liu ◽  
Peipei Liu

A novel electrode material of three-dimensional hierarchical NiCo2S4@NiMoO4core/shell nanospheres was synthesized by a facile two-step hydrothermal method. These hierarchical NiCo2S4@NiMoO4core/shell nanospheres exhibit a high specific capacitance of 1714 F g−1at a current density of 1 A g−1, which indicated the excellent electrochemistry performance.


2018 ◽  
Vol 5 (6) ◽  
pp. 1378-1385 ◽  
Author(s):  
Depeng Zhao ◽  
Xiang Wu ◽  
Chuanfei Guo

In this work, hybrid MnO2@NiCo2O4 nanosheets grown on Ni foam have been synthesized through a facile hydrothermal approach. The MnO2@NiCo2O4 electrode delivers a high specific capacitance of 3086 mF cm−2 at a current density of 2 mA cm−2.


2021 ◽  
Vol 5 (5) ◽  
pp. 129
Author(s):  
Yapeng Wang ◽  
Yanxiang Wang ◽  
Chengjuan Wang ◽  
Yongbo Wang

As one of the most outstanding high-efficiency and environmentally friendly energy storage devices, the supercapacitor has received extensive attention across the world. As a member of transition metal oxides widely used in electrode materials, manganese dioxide (MnO2) has a huge development potential due to its excellent theoretical capacitance value and large electrochemical window. In this paper, MnO2 was prepared at different temperatures by a liquid phase precipitation method, and polyaniline/manganese dioxide (PANI/MnO2) composite materials were further prepared in a MnO2 suspension. MnO2 and PANI/MnO2 synthesized at a temperature of 40 °C exhibit the best electrochemical performance. The specific capacitance of the sample MnO2-40 is 254.9 F/g at a scanning speed of 5 mV/s and the specific capacitance is 241.6 F/g at a current density of 1 A/g. The specific capacitance value of the sample PANI/MnO2-40 is 323.7 F/g at a scanning speed of 5 mV/s, and the specific capacitance is 291.7 F/g at a current density of 1 A/g, and both of them are higher than the specific capacitance value of MnO2. This is because the δ-MnO2 synthesized at 40 °C has a layered structure, which has a large specific surface area and can accommodate enough electrolyte ions to participate the electrochemical reaction, thus providing sufficient specific capacitance.


2019 ◽  
Vol 10 ◽  
pp. 281-293 ◽  
Author(s):  
Donghui Zheng ◽  
Man Li ◽  
Yongyan Li ◽  
Chunling Qin ◽  
Yichao Wang ◽  
...  

Developing a facile and environmentally friendly approach to the synthesis of nanostructured Ni(OH)2 electrodes for high-performance supercapacitor applications is a great challenge. In this work, we report an extremely simple route to prepare a Ni(OH)2 nanopetals network by immersing Ni nanofoam in water. A binder-free composite electrode, consisting of Ni(OH)2 nanopetals network, Ni nanofoam interlayer and Ni-based metallic glass matrix (Ni(OH)2/Ni-NF/MG) with sandwich structure and good flexibility, was designed and finally achieved. Microstructure and morphology of the Ni(OH)2 nanopetals were characterized. It is found that the Ni(OH)2 nanopetals interweave with each other and grow vertically on the surface of Ni nanofoam to form an “ion reservoir”, which facilitates the ion diffusion in the electrode reaction. Electrochemical measurements show that the Ni(OH)2/Ni-NF/MG electrode, after immersion in water for seven days, reveals a high volumetric capacitance of 966.4 F/cm3 at a current density of 0.5 A/cm3. The electrode immersed for five days exhibits an excellent cycling stability (83.7% of the initial capacity after 3000 cycles at a current density of 1 A/cm3). Furthermore, symmetric supercapacitor (SC) devices were assembled using ribbons immersed for seven days and showed a maximum volumetric energy density of ca. 32.7 mWh/cm3 at a power density of 0.8 W/cm3, and of 13.7 mWh/cm3 when the power density was increased to 2 W/cm3. The fully charged SC devices could light up a red LED. The work provides a new idea for the synthesis of nanostructured Ni(OH)2 by a simple approach and ultra-low cost, which largely extends the prospect of commercial application in flexible or wearable devices.


Sign in / Sign up

Export Citation Format

Share Document