Effect of γ-irradiation on the hydrolytic and thermal stability of micro- and nano-TiO2 based urea–formaldehyde composites

RSC Advances ◽  
2015 ◽  
Vol 5 (73) ◽  
pp. 59715-59722 ◽  
Author(s):  
V. Jovanović ◽  
S. Samaržija-Jovanović ◽  
B. Petković ◽  
V. Dekić ◽  
G. Marković ◽  
...  

The hydrolytic stability and thermal behavior of organic–inorganic composites prepared by two-stage polymerization of urea–formaldehyde resin (UF) with micro- and nano-TiO2 before and after irradiation has been investigated.

2017 ◽  
Vol 11 (2) ◽  
pp. 158-165 ◽  
Author(s):  
Galyna Khovanets’ ◽  
◽  
Оlena Makido ◽  
Viktoria Kochubei ◽  
Тetyana Sezonenko ◽  
...  

2021 ◽  
Author(s):  
Joong Tark Han ◽  
Joon Young Cho ◽  
Jeong Hoon Kim

The thermal stability of solution-exfoliated graphene oxide (GO) in air is one of the most important physical properties influencing its potential applications. To date, majority of the GO prepared by...


2021 ◽  
Vol 875 ◽  
pp. 116-120
Author(s):  
Muhammad Alamgir ◽  
Faizan Ali Ghauri ◽  
Waheed Qamar Khan ◽  
Sajawal Rasheed ◽  
Muhammad Sarfraz Nawaz ◽  
...  

In this study, the effect of SBR concentration (10 Phr, 20 Phr & 30 Phr ) on the thermal behavior of EPDM/SBR blends was studied. Thermogravimetric analysis (TGA) was used to check weight loss of samples as function of temperature by heating upto 600°C. X-ray diffraction (XRD) was performed to determine quality and % crystallinity of the elastomer blends. It was seen that % crystallinity improved with an increase in the content of SBR in EPDM/SBR blends. TGA revealed that the thermal stability of EPDM/SBR blends has improved by 17% than neat EPDM. Carbon nano-coatings produced by sputtering have no beneficial influence on thermal behaviour of elastomers.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Mashael Alshabanat ◽  
Amal Al-Arrash ◽  
Waffa Mekhamer

Polymer nanocomposites of polystyrene matrix containing 10% wt of organo-montmorillonite (organo-MMT) were prepared using the solution method with sonication times of 0.5, 1, 1.5, and 2 hours. Cetyltrimethylammonium bromide (CTAB) is used to modify the montmorillonite clay after saturating its surface with Na+ions. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to characterize the montmorillonite before and after modification by CTAB. The prepared nanocomposites were characterized using the same analysis methods. These results confirm the intercalation of PS in the interlamellar spaces of organo-MMT with a very small quantity of exfoliation of the silicate layers within the PS matrix of all samples at all studied times of sonication. The thermal stability of the nanocomposites was measured using thermogravimetric analysis (TGA). The results show clear improvement, and the effects of sonication time are noted.


2018 ◽  
Vol 6 (41) ◽  
pp. 20383-20392 ◽  
Author(s):  
Yongho Lee ◽  
Hyojun Lim ◽  
Sang-Ok Kim ◽  
Hyung-Seok Kim ◽  
Ki Jae Kim ◽  
...  

The thermal behavior of fully lithiated and sodiated Sn electrodes cycled in a MePF6 (Me = Li or Na)-based electrolyte was studied using differential scanning calorimetry (DSC).


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 210
Author(s):  
Xiangdong Yang ◽  
Haitao Wang ◽  
Peng Wang ◽  
Xuxin Yang ◽  
Hongying Mao

Using in situ ultraviolet photoelectron spectroscopy (UPS) and X-ray photoelectron spectroscopy (XPS) measurements, the thermal behavior of octadecyltrichlorosilane (OTS) and 1H, 1H, 2H, and 2H-perfluorooctyltriethoxysilane (PTES) monolayers on SiO2 substrates has been investigated. OTS is thermally stable up to 573 K with vacuum annealing, whereas PTES starts decomposing at a moderate temperature between 373 K and 423 K. Vacuum annealing results in the decomposition of CF3 and CF2 species rather than desorption of the entire PTES molecule. In addition, our UPS results reveal that the work function (WF)of OTS remains the same after annealing; however WF of PTES decreases from ~5.62 eV to ~5.16 eV after annealing at 573 K.


2015 ◽  
Vol 39 (4) ◽  
pp. 348-354 ◽  
Author(s):  
Mário Vanoli Scatolino ◽  
Thiago de Paula Protásio ◽  
Rafael Farinassi Mendes ◽  
Lourival Marin Mendes

Agricultural waste materials are generated in large quantities in Brazil. These can accumulate and cause serious environmental problems. One of the most commonly generated wastes in the brazilian agricultural culture is the maize cob. Being lignocellulosic in nature, the maize cob can find use as the raw material in the production of particleboards mainly concerned with furniture making. Therefore, studies regarding its thermal stability and fire resistance would be interesting. The aim of this study was to evaluate the combustibility and thermal stability of the particleboards produced from maize cob and Pinus oocarpa wood. The percentages in which maize cob was associated with Pinus oocarpa were 0%, 25%, 50%, 75% and 100%. The panels were produced using 8% urea-formaldehyde and 1% paraffin. The pressing cycle parameters included: temperature 150 °C, pressure of 3.92 MPa during 10 min. The combustibility curve analysis showed that the panels containing 25% content of maize cob had higher resistance to combustion. In general, the thermal stability decreased as the wood substitution by maize cob increased.


2013 ◽  
Vol 807-809 ◽  
pp. 2718-2721
Author(s):  
Li Na Ma ◽  
Yu Zeng Zhao ◽  
Hong Hua Ge ◽  
Kuai Ying Liu

Several kinds of rubbers used for fabric expansion joints were studied by Thermogravimetric analysis under inert atmosphere before and after artificial accelerated thermal aging. The results showed that because of the difference of the chemical structures, the rubber aging is different. And the thermal stability of Polytetrafluoroethylene (PTFE) was obviously higher than that of other two kinds of rubbers, ethylene-propylene-diene-terpolymer rubber (EPDM) and fluororubber.


Author(s):  
J. Sargolzaei ◽  
B. Ahangari

Recently, we successfully prepared medium density polyethylene (MDPE) nanocomposite with 3 wt %, 6 wt %, and 9 wt % cloisite Na+ and the thermal stability of nanocomposite was investigated using the thermogravimetric analysis (TGA). The TGA in air atmosphere showed significantly improved thermal stability of 3 wt %, 6 wt %, and 9 wt % cloisite Na+ nanocomposite in comparison to pure MDPE. In this paper, the results of TGA of MDPE/cloisite Na+ nanocomposites were predicted by the artificial neural network (ANN). The ANN and adaptive neural fuzzy inference systems (ANFIS) models were developed to predict the degradation of MDPE/cloisite Na+ nanocomposite with temperature. The results revealed that there was a good agreement between predicted thermal behavior and actual values. The findings of this study also showed that the artificial neural networks and ANFIS techniques can be applied as a powerful tool.


Sign in / Sign up

Export Citation Format

Share Document