Factors affecting the stability of chitosan/tripolyphosphate micro- and nanogels: resolving the opposing findings

2015 ◽  
Vol 3 (29) ◽  
pp. 5957-5970 ◽  
Author(s):  
Yan Huang ◽  
Yuhang Cai ◽  
Yakov Lapitsky

The stability of submicron chitosan/tripolyphosphate particles depends on the chitosan type, pH, ionic strength and particle concentration.

1966 ◽  
Vol 30 (3) ◽  
pp. 453-464 ◽  
Author(s):  
John F. Aronson

The A filament of the striated muscle sarcomere is an ordered aggregate of one or a few species of proteins. Ordering of these filaments into a parallel array is the basis of birefringence in the A region, and loss of birefringence is therefore a measure of decreased order. Heating caused a large decrease in the birefringence of glycerinated rabbit psoas muscle fibers over a narrow temperature range (∼3°C) and a large decrease in both the birefringence and optical density of the A region of Drosophila melanogaster fibrils. These changes were interpreted as a loss of A filament structure and were used to define a transition temperature (Ttr) as a measure of the stability of the A region. Since the transition temperature was sensitive to pH, ionic strength, and urea, solvent conditions which often affect protein structure, it is an experimentally useful indicator for factors affecting the structure of the A filament. Fibers from glycerinated frog muscle were less stable over a wide pH range than fibers from glycerinated rabbit muscle, a fact which demonstrates a species difference in structure. Glycerinated rabbit fibrils heated to 70°C shortened to about 40% of their initial length. The extent of shortening was not correlated with the loss of birefringence, and phase-contrast microscopy showed that this shortening occurred in the I region as well as in the A region. This response may be useful for studying the I filament and actin in much the same way that the decrease in birefringence was used for studying the A filament and myosin. The observations presented show that some properties of muscle proteins can be studied essentially in situ without the necessity of first dispersing the structure in solutions of high or low ionic strength.


2021 ◽  
Vol 379 ◽  
pp. 457-465
Author(s):  
Tiancheng Zhang ◽  
Quanle Zou ◽  
Zhiheng Cheng ◽  
Zihan Chen ◽  
Ying Liu ◽  
...  

2014 ◽  
Vol 692 ◽  
pp. 191-199
Author(s):  
Wan Fu Huang ◽  
Xiao Feng Wang ◽  
Xin Dong Li ◽  
Si Ming Yan

This study used ceramic membrane technology to concentrate tungsten fine particles for its inefficient recycling issue. Factors affecting the membrane concentration test were discussed, and the results show that: under the feed flow of 7000 mL/min, concentration time of 3 hours, and concentration liquid flow of 500 mL/min, it is the optimal effect of ceramic membrane concentration tungsten fine particle, which the interception rate reaches more than 99%, the membrane permeation flux can be nearly reach 470mL/(min×1099cm2) above, and concentrate concentration can be basically stable at around 29% . Ceramic membrane flux recovery rate can be as high as 93% by 7 minutes backwashing firstly and then 2 minutes forward cleaning.


Biochemistry ◽  
1996 ◽  
Vol 35 (6) ◽  
pp. 2037-2046 ◽  
Author(s):  
Vassiliki Karantza ◽  
Ernesto Freire ◽  
Evangelos N. Moudrianakis

2011 ◽  
Vol 8 (4) ◽  
pp. 1911-1915
Author(s):  
N. G. Nadkarni ◽  
K. V. Mangaonkar

Binary and ternary complexes of the type M-Y and M-X-Y [M = Mn(II), Ni(II), Cu(II) and Zn(II); X = 5-bromosalicylidene-4-methoxyaniline and Y = salicylidene-2,3-dimethylaniline] have been examined pH-metrically at 27±0.5°C and at constant ionic strength, μ = 0.1 M (KCl) in 75 : 25(v/v) 1,4-dioxne-water medium. The stability constants for binary (M-Y) and ternary (M-X-Y) systems were calculated.


2021 ◽  
pp. 1-36
Author(s):  
Vahideh Angardi ◽  
Ali Ettehadi ◽  
Özgün Yücel

Abstract Effective separation of water and oil dispersions is considered a critical step in the determination of technical and economic success in the petroleum industry over the years. Moreover, a deeper understanding of the emulsification process and different affected parameters is essential for cost-effective oil production, transportation, and downstream processing. Numerous studies conducted on the concept of dispersion characterization indicate the importance of this concept, which deserves attention by the scientific community. Therefore, a comprehensive review study with critical analysis on significant concepts will help readers follow them easily. This study is a comprehensive review of the concept of dispersion characterization and conducted studies recently published. The main purposes of this review are to 1) Highlight flaws, 2) Outline gaps and weaknesses, 3) Address conflicts, 4) Prevent duplication of effort, 5) List factors affecting dispersion. It was found that the separation efficiency and stability of dispersions are affected by different chemical and physical factors. Factors affecting the stability of the emulsions have been studied in detail and will help to look for the right action to ensure stable emulsions. In addition, methods of ensuring stability, especially coalescence are highlighted, and coalescence mathematical explanations of phenomena are presented.


2017 ◽  
Vol 73 (7) ◽  
pp. 618-625 ◽  
Author(s):  
Nicole Balasco ◽  
Luciana Esposito ◽  
Luigi Vitagliano

The protein folded state is the result of the fine balance of a variety of different forces. Even minor structural perturbations may have a significant impact on the stability of these macromolecules. Studies carried out in recent decades have led to the convergent view that proteins are endowed with a flexible spine. One of the open issues related to protein local backbone geometry is the identification of the factors that influence the amplitude of the τ (N—Cα—C) angle. Here, statistical analyses performed on an updated ensemble of X-ray protein structures by dissecting the contribution of the major factors that can potentially influence the local backbone geometry of proteins are reported. The data clearly indicate that the local backbone conformation has a prominent impact on the modulation of the τ angle. Therefore, a proper assessment of the impact of the other potential factors can only be appropriately evaluated when small (φ, ψ) regions are considered. Here, it is shown that when the contribution of the backbone conformation is removed by considering small (φ, ψ) areas, an impact of secondary structure, as defined byDSSP, and/or the residue type on τ is still detectable, although to a limited extent. Indeed, distinct τ-value distributions are detected for Pro/Gly and β-branched (Ile/Val) residues. The key role of the local backbone conformation highlighted here supports the use of variable local backbone geometry in protein refinement protocols.


2013 ◽  
Author(s):  
J. Rick Griffin ◽  
James R Johnstone ◽  
Terry E Cotter ◽  
Ashleigh E O'Brien

Sign in / Sign up

Export Citation Format

Share Document