Macroscopic switches constructed through host–guest chemistry

2016 ◽  
Vol 52 (25) ◽  
pp. 4602-4612 ◽  
Author(s):  
Yue Sun ◽  
Junkai Ma ◽  
Demei Tian ◽  
Haibing Li

In this feature article, we discuss recent developments in macroscopic contact angle switches formed by different macrocyclic hosts and highlight the properties of these new functional surfaces and their potential applications.

2012 ◽  
Vol 21 (1-2) ◽  
pp. 21-32 ◽  
Author(s):  
Ioannis Karapanagiotis ◽  
Panagiotis Manoudis

AbstractSuperhydrophobicity – also known as water repellency – has recently attracted considerable attention because of its numerous potential applications. However, the fundamental concepts and equations describing the wettability of superhydrophobic surfaces have been known since the 1940s. These concepts are reviewed and discussed in the present feature article in light of the recent developments. Furthermore, the potential use of water-repellent siloxane-nanoparticle composites for surface protection and consolidation of stones and mortars used in outdoor objects of cultural heritage is investigated. Finally, it is shown that the wettability of the composite surfaces can be predicted by the Cassie-Baxter equation.


2016 ◽  
Vol 52 (77) ◽  
pp. 11465-11487 ◽  
Author(s):  
Joan Teyssandier ◽  
Steven De Feyter ◽  
Kunal S. Mali

In this feature article, we survey recent developments in host–guest chemistry studied in surface-adsorbed physisorbed supramolecular networks.


2019 ◽  
Vol 55 (56) ◽  
pp. 8036-8059 ◽  
Author(s):  
Bo Li ◽  
Tian He ◽  
Yiqi Fan ◽  
Xinchao Yuan ◽  
Huayu Qiu ◽  
...  

This feature article summarized the recent progress on the construction of metallacycle/metallacage-cored supramolecular polymers by the hierarchical self-assembly, and the potential applications in the areas of light emitting, sensing, bio-imaging, delivery and release, etc., are also presented.


2014 ◽  
Vol 25 (4) ◽  
pp. 279-287 ◽  
Author(s):  
Stefan Hey ◽  
Panagiota Anastasopoulou ◽  
André Bideaux ◽  
Wilhelm Stork

Ambulatory assessment of emotional states as well as psychophysiological, cognitive and behavioral reactions constitutes an approach, which is increasingly being used in psychological research. Due to new developments in the field of information and communication technologies and an improved application of mobile physiological sensors, various new systems have been introduced. Methods of experience sampling allow to assess dynamic changes of subjective evaluations in real time and new sensor technologies permit a measurement of physiological responses. In addition, new technologies facilitate the interactive assessment of subjective, physiological, and behavioral data in real-time. Here, we describe these recent developments from the perspective of engineering science and discuss potential applications in the field of neuropsychology.


Photonics ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 258
Author(s):  
S. Stalin ◽  
R. Ramakrishnan ◽  
M. Lakshmanan

Nonlinear dynamics of an optical pulse or a beam continue to be one of the active areas of research in the field of optical solitons. Especially, in multi-mode fibers or fiber arrays and photorefractive materials, the vector solitons display rich nonlinear phenomena. Due to their fascinating and intriguing novel properties, the theory of optical vector solitons has been developed considerably both from theoretical and experimental points of view leading to soliton-based promising potential applications. Mathematically, the dynamics of vector solitons can be understood from the framework of the coupled nonlinear Schrödinger (CNLS) family of equations. In the recent past, many types of vector solitons have been identified both in the integrable and non-integrable CNLS framework. In this article, we review some of the recent progress in understanding the dynamics of the so called nondegenerate vector bright solitons in nonlinear optics, where the fundamental soliton can have more than one propagation constant. We address this theme by considering the integrable two coupled nonlinear Schrödinger family of equations, namely the Manakov system, mixed 2-CNLS system (or focusing-defocusing CNLS system), coherently coupled nonlinear Schrödinger (CCNLS) system, generalized coupled nonlinear Schrödinger (GCNLS) system and two-component long-wave short-wave resonance interaction (LSRI) system. In these models, we discuss the existence of nondegenerate vector solitons and their associated novel multi-hump geometrical profile nature by deriving their analytical forms through the Hirota bilinear method. Then we reveal the novel collision properties of the nondegenerate solitons in the Manakov system as an example. The asymptotic analysis shows that the nondegenerate solitons, in general, undergo three types of elastic collisions without any energy redistribution among the modes. Furthermore, we show that the energy sharing collision exhibiting vector solitons arises as a special case of the newly reported nondegenerate vector solitons. Finally, we point out the possible further developments in this subject and potential applications.


2021 ◽  
pp. 030098582199932
Author(s):  
Laura Bongiovanni ◽  
Anneloes Andriessen ◽  
Marca H. M. Wauben ◽  
Esther N. M. Nolte-’t Hoen ◽  
Alain de Bruin

With a size range from 30 to 1000 nm, extracellular vesicles (EVs) are one of the smallest cell components able to transport biologically active molecules. They mediate intercellular communications and play a fundamental role in the maintenance of tissue homeostasis and pathogenesis in several types of diseases. In particular, EVs actively contribute to cancer initiation and progression, and there is emerging understanding of their role in creation of the metastatic niche. This fact underlies the recent exponential growth in EV research, which has improved our understanding of their specific roles in disease and their potential applications in diagnosis and therapy. EVs and their biomolecular cargo reflect the state of the diseased donor cells, and can be detected in body fluids and exploited as biomarkers in cancer and other diseases. Relatively few studies have been published on EVs in the veterinary field. This review provides an overview of the features and biology of EVs as well as recent developments in EV research including techniques for isolation and analysis, and will address the way in which the EVs released by diseased tissues can be studied and exploited in the field of veterinary pathology. Uniquely, this review emphasizes the important contribution that pathologists can make to the field of EV research: pathologists can help EV scientists in studying and confirming the role of EVs and their molecular cargo in diseased tissues and as biomarkers in liquid biopsies.


2021 ◽  
Author(s):  
Moushakhi Ghosh ◽  
Shabana Khan

This feature article intends to highlight and comprehensively summarize the recent developments in the field of silylene-coinage metal chemistry. Recent years have witnessed exponential growth in the utilization of N-heterocyclic...


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6315
Author(s):  
Shunli Chu ◽  
Jue Wang ◽  
Fengxiang Gao

Chitosan (CS) is a natural polymer with a positive charge, a deacetylated derivative of chitin. Chitosan nanostructures (nano-CS) have received increasing interest due to their potential applications and remarkable properties. They offer advantages in stomatology due to their excellent biocompatibility, their antibacterial properties, and their biodegradability. Nano-CSs can be applied as drug carriers for soft tissue diseases, bone tissue engineering and dental hard tissue remineralization; furthermore, they have been used in endodontics due to their antibacterial properties; and, finally, nano-CS can improve the adhesion and mechanical properties of dental-restorative materials due to their physical blend and chemical combinations. In this review, recent developments in the application of nano-CS for stomatology are summarized, with an emphasis on nano-CS’s performance characteristics in different application fields. Moreover, the challenges posed by and the future trends in its application are assessed.


Author(s):  
Luciano Mescia ◽  
Pietro Bia ◽  
Onofrio Losito

This chapter summarizes the physical properties of THz antennas, provides a summary of some of the most important recent developments in the field of energy harvesting of Earth long-wave infrared radiation, discusses the potential applications and identifies the future challenges and opportunities. In particular, a THz antenna is designed in order to transform the thermal energy, provided by the Sun and re-emitted from the Earth, in electricity. The proposed antenna is a square spiral of gold printed on a low cost dielectric substrate. Simulations have been conducted in order to investigate the behavior of the antenna illuminated by a circularly polarized plane wave with an amplitude chosen according to the Stefan-Boltzmann radiation law. Moreover, these THz antennas could be coupled with other components to obtain direct rectification of T radiation. As a consequence, these structures further optimized could be a promising alternative to the conventional photovoltaic solar cells.


Sign in / Sign up

Export Citation Format

Share Document