Colloidal atomic layer deposition growth of PbS/CdS core/shell quantum dots

2017 ◽  
Vol 53 (5) ◽  
pp. 869-872 ◽  
Author(s):  
Michel Nasilowski ◽  
Lea Nienhaus ◽  
Sophie N. Bertram ◽  
Moungi G. Bawendi

We show here a self-limiting layer-by-layer growth of a CdS shell on PbS cores.

Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2605 ◽  
Author(s):  
Becker ◽  
Sierka

Plasma-enhanced atomic layer deposition (PEALD) is a widely used, powerful layer-by-layer coating technology. Here, we present an atomistic simulation scheme for PEALD processes, combining the Monte Carlo deposition algorithm and structure relaxation using molecular dynamics. In contrast to previous implementations, our approach employs a real, atomistic model of the precursor. This allows us to account for steric hindrance and overlap restrictions at the surface corresponding to the real precursor deposition step. In addition, our scheme takes various process parameters into account, employing predefined probabilities for precursor products at each Monte Carlo deposition step. The new simulation protocol was applied to investigate PEALD synthesis of SiO2 thin films using the bis-diethylaminosilane precursor. It revealed that increasing the probability for precursor binding to one surface oxygen atom favors amorphous layer growth, a large number of –OH impurities, and the formation of voids. In contrast, a higher probability for precursor binding to two surface oxygen atoms leads to dense SiO2 film growth and a reduction of –OH impurities. Increasing the probability for the formation of doubly bonded precursor sites is therefore the key factor for the formation of dense SiO2 PEALD thin films with reduced amounts of voids and –OH impurities.


2017 ◽  
Vol 53 (32) ◽  
pp. 4517-4517
Author(s):  
Michel Nasilowski ◽  
Lea Nienhaus ◽  
Sophie N. Bertram ◽  
Moungi G. Bawendi

Correction for ‘Colloidal atomic layer deposition growth of PbS/CdS core/shell quantum dots’ by Michel Nasilowski et al., Chem. Commun., 2017, 53, 869–872.


2019 ◽  
Author(s):  
Jiajia Tao ◽  
Hong-Ping Ma ◽  
Kaiping Yuan ◽  
Yang Gu ◽  
Jianwei Lian ◽  
...  

<div>As a promising oxygen evolution reaction semiconductor, TiO2 has been extensively investigated for solar photoelectrochemical water splitting. Here, a highly efficient and stable strategy for rationally preparing GaON cocatalysts on TiO2 by atomic layer deposition is demonstrated, which we show significantly enhances the</div><div>photoelectrochemical performance compared to TiO2-based photoanodes. For TiO2@20 nm-GaON core-shell nanowires a photocurrent density up to 1.10 mA cm-2 (1.23 V vs RHE) under AM 1.5 G irradiation (100 mW cm-2) has been achieved, which is 14 times higher than that of TiO2 NWs. Furthermore, the oxygen vacancy formation on GaON as well as the band gap matching with TiO2 not only provides more active sites for water oxidation but also enhances light absorption to promote interfacial charge separation and migration. Density functional theory studies of model systems of GaON-modified TiO2 confirm the band gap reduction, high reducibility and ability to activate water. The highly efficient and stable systems of TiO2@GaON core-shell nanowires provide a deeper understanding and universal strategy for enhancing photoelectrochemical performance of photoanodes now available. </div>


2021 ◽  
Vol 546 ◽  
pp. 149086
Author(s):  
Xiangping Pan ◽  
Yanhua Dong ◽  
Ming Jia ◽  
Jianxiang Wen ◽  
Caiyun Su ◽  
...  

2015 ◽  
Vol 33 ◽  
pp. 154-160 ◽  
Author(s):  
Kyung Yong Ko ◽  
Hyemin Kang ◽  
Wonseon Lee ◽  
Chang-Wan Lee ◽  
Jusang Park ◽  
...  

2017 ◽  
Vol 139 (41) ◽  
pp. 14518-14525 ◽  
Author(s):  
Degao Wang ◽  
Matthew V. Sheridan ◽  
Bing Shan ◽  
Byron H. Farnum ◽  
Seth L. Marquard ◽  
...  

2012 ◽  
Vol 48 (7) ◽  
pp. 1063-1065 ◽  
Author(s):  
Irene J. Hsu ◽  
Yannick C. Kimmel ◽  
Xiaoqiang Jiang ◽  
Brian G. Willis ◽  
Jingguang G. Chen

Sign in / Sign up

Export Citation Format

Share Document