Synthesis and photocatalytic activity of K2CaNaNb3O10, a new Ruddlesden–Popper phase layered perovskite

2017 ◽  
Vol 46 (32) ◽  
pp. 10594-10601 ◽  
Author(s):  
Takayoshi Oshima ◽  
Toshiyuki Yokoi ◽  
Miharu Eguchi ◽  
Kazuhiko Maeda

The photocatalytic performance of a new layered perovskite K2CaNaNb3O10 of the Ruddlesden–Popper phase was compared to Dion–Jacobson type KCa2Nb3O10.

2021 ◽  
Author(s):  
Calin Ladasiu ◽  
Natalia Kulischow ◽  
Roland Marschall

Dion-Jacobson type layered perovskite niobium oxides KCa2Nb3O10 and KSr2Nb3O10 were prepared via molten salt method, and the potassium cations were exchanged by protons using nitric acid. Different degrees of proton exchange were adjusted, and the dependence of photocatalytic activity for hydrogen evolution on proton exchange was investigated. Moreover, proton exchange leads to different amounts of water incorporated into the interlayer spaces, also influencing photocatalytic performance significantly. Decoupling water intercalation and proton exchange, the photocatalytic activity of proton exchanged KCa2Nb3O10 and KSr2Nb3O10 can be revealed and tailored for maximum activity.


2007 ◽  
Vol 534-536 ◽  
pp. 1481-1484 ◽  
Author(s):  
Asuka Kozu ◽  
Hirotaka Fujimori ◽  
Ki Young Kim ◽  
Kazunori Oshiro ◽  
Setsuo Yamamoto ◽  
...  

Sr2Ta2O7, a layered perovskite compound, has been reported to possess most excellent photocatalytic properties among the layered perovskite materials. Recently, we have successfully demonstrated that Ba5Ta4O15 that was prepared under Ta rich atmosphere has high photocatalytic performance as well as Sr2Ta2O7. In this study, several amount of Ba was doped into Sr2Ta2O7, and the photocatalyst samples with a mol ratio of Sr: Ba: Ta = (1-x): x: 1 were prepared by the polymerized complex method to investigate the effect of Ba substitution for the Sr site on photocatalytic activity. The maximum photocatalytic performance was obtained for x = 0.2 near the solid solubility limit, which is three times as high as that of undoped Sr2Ta2O7 and is in the highest level in a series of tantalum photocatalysts reported so far. The increase of photocatalytic activity would be caused by crystal distortion due to doping of Ba ion.


2019 ◽  
Vol 8 (1) ◽  
pp. 56-61
Author(s):  
Aneeya K. Samantara ◽  
Debasrita Dash ◽  
Dipti L. Bhuyan ◽  
Namita Dalai ◽  
Bijayalaxmi Jena

: In this article, we explored the possibility of controlling the reactivity of ZnO nanostructures by modifying its surface with gold nanoparticles (Au NPs). By varying the concentration of Au with different wt% (x = 0.01, 0.05, 0.08, 1 and 2), we have synthesized a series of (ZnO/Aux) nanocomposites (NCs). A thorough investigation of the photocatalytic performance of different wt% of Au NPs on ZnO nanosurface has been carried out. It was observed that ZnO/Au0.08 nanocomposite showed the highest photocatalytic activity among all concentrations of Au on the ZnO surface, which degrades the dye concentration within 2 minutes of visible light exposure. It was further revealed that with an increase in the size of plasmonic nanoparticles beyond 0.08%, the accessible surface area of the Au nanoparticle decreases. The photon absorption capacity of Au nanoparticle decreases beyond 0.08% resulting in a decrease in electron transfer rate from Au to ZnO and a decrease of photocatalytic activity. Background: Due to the industrialization process, most of the toxic materials go into the water bodies, affecting the water and our ecological system. The conventional techniques to remove dyes are expensive and inefficient. Recently, heterogeneous semiconductor materials like TiO2 and ZnO have been regarded as potential candidates for the removal of dye from the water system. Objective: To investigate the photocatalytic performance of different wt% of Au NPs on ZnO nanosurface and the effect of the size of Au NPs for photocatalytic performance in the degradation process. Methods: A facile microwave method has been adopted for the synthesis of ZnO nanostructure followed by a reduction of gold salt in the presence of ZnO nanostructure to form the composite. Results: ZnO/Au0.08 nanocomposite showed the highest photocatalytic activity which degrades the dye concentration within 2 minutes of visible light exposure. The schematic mechanism of electron transfer rate was discussed. Conclusion: Raspberry shaped ZnO nanoparticles modified with different percentages of Au NPs showed good photocatalytic behavior in the degradation of dye molecules. The synergetic effect of unique morphology of ZnO and well anchored Au nanostructures plays a crucial role.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3948
Author(s):  
Lingfang Qiu ◽  
Zhiwei Zhou ◽  
Mengfan Ma ◽  
Ping Li ◽  
Jinyong Lu ◽  
...  

Novel visible-light responded aluminosilicophosphate-5 (SAPO-5)/g-C3N4 composite has been easily constructed by thermal polymerization for the mixture of SAPO-5, NH4Cl, and dicyandiamide. The photocatalytic activity of SAPO-5/g-C3N4 is evaluated by degrading RhB (30 mg/L) under visible light illumination (λ > 420 nm). The effects of SAPO-5 incorporation proportion and initial RhB concentration on the photocatalytic performance have been discussed in detail. The optimized SAPO-5/g-C3N4 composite shows promising degradation efficiency which is 40.6% higher than that of pure g-C3N4. The degradation rate improves from 0.007 min−1 to 0.022 min−1, which is a comparable photocatalytic performance compared with other g-C3N4-based heterojunctions for dye degradation. The migration of photo-induced electrons from g-C3N4 to the Al site of SAPO-5 should promote the photo-induced electron-hole pairs separation rate of g-C3N4 efficiently. Furthermore, the redox reactions for RhB degradation occur on the photo-induced holes in the g-C3N4 and Al sites in SAPO-5, respectively. This achievement not only improves the photocatalytic activity of g-C3N4 efficiently, but also broadens the application of SAPOs in the photocatalytic field.


2021 ◽  
Vol 50 (9) ◽  
pp. 3253-3260 ◽  
Author(s):  
Shan Zhao ◽  
Junbiao Wu ◽  
Yan Xu ◽  
Xia Zhang ◽  
Yide Han ◽  
...  

CdS/Ag2S/g-C3N4 ternary composites showed excellent photocatalytic performance toward H2 evolution. Their improved photocatalytic activity could be attributed not only to the synergic effect, but also to the introduction of Ag2S.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 215
Author(s):  
Ewa Wierzbicka ◽  
Karolina Syrek ◽  
Klaudia Mączka ◽  
Grzegorz D. Sulka

High surface area, self-organized nanoporous ZrO2 arrays with perfect adhesion to the Zr substrate were synthesized by anodization in an aqueous electrolyte containing (NH4)2SO4 and NH4F. The obtained semiconductor materials were tested as photocatalysts for decolorization of the methyl red (MR) as a model azo dye pollutant. It was demonstrated that as-synthesized anodic ZrO2 anodic layers are already crystalline and, therefore, do not require further thermal treatment to provide a high photocatalytic performance. However, photocatalytic efficiency could be improved by annealing at a relatively low-temperature of 350 °C. Higher annealing temperatures caused a gradual drop of photocatalytic activity. The photocatalytic behavior was correlated with the crystal phase transformation in anodic ZrO2. It was found that higher photocatalytic activity was observed for the tetragonal phase over the monoclinic phase (predominant at elevated temperatures). It results from the optimal and complex electronic structure of annealed ZrO2 with three different energy states having absorption edges at 2.0, 4.01 and 5.28 eV.


2013 ◽  
Vol 827 ◽  
pp. 3-7
Author(s):  
Shun Jiang He ◽  
Xue Yan Du ◽  
Qiao Wang ◽  
Jing Xu

The photocatalytic activity of eosin-sensitized TiO2 nanoparticles on photocatalytic degradation rate (PDR) of methyl orange under sunlight irradiation was studied. The influential factors on the degradation, such as eosin concentration, TiO2 dosage, sensitization time and sensitization temperature were also investigated. The results show that: The performance of TiO2 nanoparticles for PDR of methyl orange has been improved obviously for eosin sensitizing. The PDR of methyl orange reached 45.28% under the conditions of eosin concentration of 20mg/L, TiO2 dosage of 0.5000g/L, sensitization time of 24h and sensitization temperature of 20°C.


2011 ◽  
Vol 194-196 ◽  
pp. 385-388
Author(s):  
Hong Juan Wang ◽  
Feng Qiang Sun ◽  
Ming Zhong Ren ◽  
Qing Wei Guo

Nanoporous SnO2with high photocatalytic activity has been successfully prepared by a photochemical method, using SnCl2aqueous solution as a precursor. The as-synthesized sample was characterized by XRD, N2 adsorption-desorption and UV-vis. The photocatalytic activity of the sample was evaluated by degrading methylene blue (MB) aqueous solution under the UV light source and was compared with that of the commercial titania (Degussa P25). The results showed that the produced SnO2can degrade MB solution quickly and has comparative photocatalytic performance with P25 for degrading MB. This facile method supplies an effective way to prepare SnO2photocatalyst.


Minerals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 437 ◽  
Author(s):  
Zhiming Sun ◽  
Fang Yuan ◽  
Xue Li ◽  
Chunquan Li ◽  
Jie Xu ◽  
...  

A novel kind of cyanuric-acid-modified graphitic carbon nitride (g-C3N4)/kaolinite (m-CN/KA) composite with enhanced visible light-driven photocatalytic performance was fabricated through a facile two-step process. Rhodamine B (RhB) was taken as the target pollutant to study the photocatalytic performance of the synthesized catalysts. It is indicated that the cyanuric acid modification significantly enhanced photocatalytic activity under visible light illumination in comparison with the other reference samples. The apparent rate constant of m-CN/KA is almost 1.9 times and 4.0 times those of g-C3N4/kaolinite and bare g-C3N4, respectively. The superior photocatalytic performance of m-CN/KA could be ascribed, not only to the generation of abundant pore structure and reactive sites, but also to the efficient separation of the photogenerated electron-hole pairs. Furthermore, the possible photocatalytic degradation mechanism of m-CN/KA was also presented in this paper. It could be anticipated that this novel and efficient, metal-free, mineral-based photocatalytic composite has great application prospects in organic pollutant degradation.


2018 ◽  
Vol 5 (2) ◽  
pp. 481-489 ◽  
Author(s):  
Wanbao Wu ◽  
Xu Li ◽  
Zhaohui Ruan ◽  
Yudong Li ◽  
Xianzhu Xu ◽  
...  

The enhanced photocatalytic performance of a TiO2 nanoparticle trapped meso/macroporous g-C3N4 heterojunction photocatalyst is strongly related to its enhanced light absorption as revealed by optical simulation.


Sign in / Sign up

Export Citation Format

Share Document