scholarly journals Voltammetry and molecular assembly of G-quadruplex DNAzyme on single-crystal Au(111)-electrode surfaces – hemin as an electrochemical intercalator

2016 ◽  
Vol 193 ◽  
pp. 99-112 ◽  
Author(s):  
Ling Zhang ◽  
Jens Ulstrup ◽  
Jingdong Zhang

DNA quadruplexes (qs) are a class of “non-canonical” oligonucleotides (OGNs) composed of stacked guanine (G) quartets stabilized by specific cations. Metal porphyrins selectively bind to G-qs complexes to form what is known as DNAzyme, which can exhibit peroxidase and other catalytic activity similar to heme group metalloenzymes. In the present study we investigate the electrochemical properties and the structure of DNAzyme monolayers on single-crystal Au(111)-electrode surfaces using cyclic voltammetry and scanning tunnelling microscopy under electrochemical potential control (in situ STM). The target DNAzyme is formed from a single-strand OGN with 12 guanines and iron(iii) porphyrin IX (hemin), and assembles on Au(111) through a mercapto alkyl linker. The DNAzyme monolayers exhibit a strong pair of redox peaks at 0.0 V (NHE) at pH 7 in acetate buffer, shifted positively by about 50 mV compared to free hemin weakly physisorbed on the Au(111)-electrode surface. The voltammetric hemin signal of DNAzyme is enhanced 15 times compared with that of hemin adsorbed directly on the Au(111)-electrode surface. This is indicative of both the formation of a close to dense DNAzyme monolayer and that hemin is strongly bound to the immobilized 12G-qs in well-defined orientation favorable for interfacial ET with a rate constant of 6.0 ± 0.4 s−1. This is supported by in situ STM which discloses single-molecule G-quartet structures with a size of 1.6 ± 0.2 nm.

2021 ◽  
Vol 11 (8) ◽  
pp. 3317
Author(s):  
C.S. Quintans ◽  
Denis Andrienko ◽  
Katrin F. Domke ◽  
Daniel Aravena ◽  
Sangho Koo ◽  
...  

External electric fields (EEFs) have proven to be very efficient in catalysing chemical reactions, even those inaccessible via wet-chemical synthesis. At the single-molecule level, oriented EEFs have been successfully used to promote in situ single-molecule reactions in the absence of chemical catalysts. Here, we elucidate the effect of an EEFs on the structure and conductance of a molecular junction. Employing scanning tunnelling microscopy break junction (STM-BJ) experiments, we form and electrically characterize single-molecule junctions of two tetramethyl carotene isomers. Two discrete conductance signatures show up more prominently at low and high applied voltages which are univocally ascribed to the trans and cis isomers of the carotenoid, respectively. The difference in conductance between both cis-/trans- isomers is in concordance with previous predictions considering π-quantum interference due to the presence of a single gauche defect in the trans isomer. Electronic structure calculations suggest that the electric field polarizes the molecule and mixes the excited states. The mixed states have a (spectroscopically) allowed transition and, therefore, can both promote the cis-isomerization of the molecule and participate in electron transport. Our work opens new routes for the in situ control of isomerisation reactions in single-molecule contacts.


2006 ◽  
Vol 83 (4-9) ◽  
pp. 1706-1709 ◽  
Author(s):  
J. Tang ◽  
E.P. De Poortere ◽  
J.E. Klare ◽  
C. Nuckolls ◽  
S.J. Wind

2006 ◽  
Vol 59 (6) ◽  
pp. 359 ◽  
Author(s):  
Pall Thordarson ◽  
Rob Atkin ◽  
Wouter H. J. Kalle ◽  
Gregory G. Warr ◽  
Filip Braet

Scanning probe microscopy (SPM) techniques, including atomic force microscopy (AFM) and scanning tunnelling microscopy (STM), have revolutionized our understanding of molecule–surface interactions. The high resolution and versatility of SPM techniques have helped elucidate the morphology of adsorbed surfactant layers, facilitated the study of electronically conductive single molecules and biomolecules connected to metal substrates, and allowed direct observation of real-time processes such as in situ DNA hybridization and drug–cell interactions. These examples illustrate the power that SPM possesses to study (bio)molecules on surfaces and will be discussed in depth in this review.


2006 ◽  
Vol 69 (2) ◽  
pp. 193-200 ◽  
Author(s):  
Tim Albrecht ◽  
Wen-Wu Li ◽  
Wolfgang Haehnel ◽  
Peter Hildebrandt ◽  
Jens Ulstrup

1989 ◽  
Vol 111 (16) ◽  
pp. 6473-6474 ◽  
Author(s):  
John L. Stickney ◽  
Ignacio Villegas ◽  
Charles B. Ehlers

2021 ◽  
Vol 8 (1) ◽  
pp. 164-171 ◽  
Author(s):  
Jiawei Yan ◽  
Emil Egede Frøkjær ◽  
Christian Engelbrekt ◽  
Silke Leimkühler ◽  
Jens Ulstrup ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document