Dynamic shear force microscopy of confined liquids at a gold electrode

2017 ◽  
Vol 199 ◽  
pp. 299-309 ◽  
Author(s):  
Günther Krämer ◽  
Florian Hausen ◽  
Roland Bennewitz

The confinement of liquids in nanometer-scale gaps can lead to changes in their viscous shear properties. For liquids of polar molecules, the charge state of the confining surfaces has a significant influence on the structure in the confined liquid. Here we report on the implementation of dynamic shear force microscopy in an electrochemical cell. Lateral oscillations of the tip of an atomic force microscope were magnetically activated at a frequency of about 50 kHz. The damping of the lateral tip oscillation was recorded as a function of the tip–sample distance and of the electrode potential at the surface of a Au(100) single crystal electrode. The influence of surface charges on the shear response of the nano-confined liquids was demonstrated for the ionic liquid [EMIM][NTf2] and for aqueous Na2SO4 solution.


2016 ◽  
Vol 28 (13) ◽  
pp. 134004 ◽  
Author(s):  
Marc-Dominik Krass ◽  
Nitya Nand Gosvami ◽  
Robert W Carpick ◽  
Martin H Müser ◽  
Roland Bennewitz






2008 ◽  
Vol 87 (10) ◽  
pp. 980-983 ◽  
Author(s):  
R.M. Gaikwad ◽  
I. Sokolov

Although silica particles have been used for tooth polishing, polishing with nanosized particles has not been reported. Here we hypothesize that such polishing may protect tooth surfaces against the damage caused by cariogenic bacteria, because the bacteria can be easily removed from such polished surfaces. This was tested on human teeth ex vivo. The roughness of the polished surfaces was measured with atomic force microscopy (AFM). A considerably lower nanometer-scale roughness was obtained when silica nanoparticles were used to polish the tooth surfaces, as compared with conventional polishing pastes. Bacterial attachment to the dental surfaces was studied for Streptococcus mutans, the most abundant cariogenic bacteria. We demonstrated that it is easier to remove bacteria from areas polished with silica nanoparticles. The results demonstrate the advantage of using silica nanoparticles as abrasives for tooth polishing.



2007 ◽  
Vol 22 (1) ◽  
pp. 193-200
Author(s):  
Ralf-Peter Herber ◽  
Gerold A. Schneider

Ba2CuWO6 (BCW) was first synthesized in the mid 1960s, and it was predicted to be a ferroelectric material with a very high Curie temperature of 1200 °C [N. Venevtsev and A.G. Kapyshev: New ferroelectrics. Proc. Int. Meet. Ferroelectr.1, 261 (1966)]. Since then, crystallographic studies were performed on the compound with the result that its crystal structure is centrosymmetric. Thus for principal reason, BCW cannot be ferroelectric. That obvious contradiction was examined in this study. Disk-shaped ceramic samples of BCW and Ba2Cu0.5Zn0.5WO6 (BCZW) were prepared. Because of the low electrical resistivity of the ceramics, it was not possible to perform a typical polariszation hysteresis loop for characterization of ferroelectric properties. Scanning electron microscopy investigations strongly suggest that the reason for the conductivity is found in the impurities/precipitations within the microstructure of the samples. With atomic force microscopy (AFM) in piezoresponse force microscopy (PFM) mode, it is possible to characterize local piezoelectricity by imaging the ferroelectric domains. Neither BCW nor BCZW showed any domain structure. Nevertheless, when local electric fields were applied to the surfaces of the ceramics topographic displacements, imaged with AFM, and surface charges, imaged with Kelvin probe force microscopy (KFM) and PFM, were measured and remained stable on the surface for the time of the experiment. Therefore BCW and BCZW are considered to be electrets and possibly relaxor ferroelectrics.



2018 ◽  
Vol 271 (2) ◽  
pp. 222-229 ◽  
Author(s):  
Z. BI ◽  
W. CAI ◽  
Y. WANG ◽  
G. SHANG


Sign in / Sign up

Export Citation Format

Share Document