Surface displacements and surface charges on Ba2CuWO6 and Ba2Cu0.5Zn0.5WO6 ceramics induced by local electric fields investigated with scanning-probe microscopy

2007 ◽  
Vol 22 (1) ◽  
pp. 193-200
Author(s):  
Ralf-Peter Herber ◽  
Gerold A. Schneider

Ba2CuWO6 (BCW) was first synthesized in the mid 1960s, and it was predicted to be a ferroelectric material with a very high Curie temperature of 1200 °C [N. Venevtsev and A.G. Kapyshev: New ferroelectrics. Proc. Int. Meet. Ferroelectr.1, 261 (1966)]. Since then, crystallographic studies were performed on the compound with the result that its crystal structure is centrosymmetric. Thus for principal reason, BCW cannot be ferroelectric. That obvious contradiction was examined in this study. Disk-shaped ceramic samples of BCW and Ba2Cu0.5Zn0.5WO6 (BCZW) were prepared. Because of the low electrical resistivity of the ceramics, it was not possible to perform a typical polariszation hysteresis loop for characterization of ferroelectric properties. Scanning electron microscopy investigations strongly suggest that the reason for the conductivity is found in the impurities/precipitations within the microstructure of the samples. With atomic force microscopy (AFM) in piezoresponse force microscopy (PFM) mode, it is possible to characterize local piezoelectricity by imaging the ferroelectric domains. Neither BCW nor BCZW showed any domain structure. Nevertheless, when local electric fields were applied to the surfaces of the ceramics topographic displacements, imaged with AFM, and surface charges, imaged with Kelvin probe force microscopy (KFM) and PFM, were measured and remained stable on the surface for the time of the experiment. Therefore BCW and BCZW are considered to be electrets and possibly relaxor ferroelectrics.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
N. V. Andreeva ◽  
A. Petraru ◽  
O. Yu. Vilkov ◽  
A. E. Petukhov

Abstract A combined study of local structural, electric and ferroelectric properties of SrTiO$$_{3}$$ 3 /La$$_{0.7}$$ 0.7 Sr$$_{0.3}$$ 0.3 MnO$$_{3}$$ 3 /BaTiO$$_{3}$$ 3 heterostructures was performed by Piezoresponse Force Microscopy, tunneling Atomic Force Microscopy and Scanning Tunneling Microscopy in the temperature range 30–295 K. The direct correlation of film structure (epitaxial, nanocrystalline or polycrystalline) with local electric and ferroelectric properties was observed. For polycrystalline ferroelectric films the predominant polarization state is defined by the peculiarity of screening the built-in field by positively charged point defects. Based on Scanning Tunneling Spectroscopy results, it was found that a sequent voltage application provokes the modification of local resistive properties related to the redistribution of point defects in thin ferroelectric films. A qualitative analysis of acquired Piezoresponse Force Microscopy, tunneling Atomic Force Microscopy and Scanning Tunneling Microscopy images together with Scanning Tunneling Spectroscopy measurements enabled us to conclude that in the presence of structural defects the competing processes of electron injection, trap filling and the drift of positively charged point defects drives the change of resistive properties of thin films under applied electric field. In this paper, we propose a new approach based on Scanning Tunneling Microscopy/Spectroscopy under ultrahigh vacuum conditions to clarify the influence of point defects on local resistive properties of nanometer-thick ferroelectric films.


2015 ◽  
Vol 21 (1) ◽  
pp. 154-163 ◽  
Author(s):  
Konstantin Romanyuk ◽  
Sergey Yu. Luchkin ◽  
Maxim Ivanov ◽  
Arseny Kalinin ◽  
Andrei L. Kholkin

AbstractPiezoresponse force microscopy (PFM) provides a novel opportunity to detect picometer-level displacements induced by an electric field applied through a conducting tip of an atomic force microscope (AFM). Recently, it was discovered that superb vertical sensitivity provided by PFM is high enough to monitor electric-field-induced ionic displacements in solids, the technique being referred to as electrochemical strain microscopy (ESM). ESM has been implemented only in multi-frequency detection modes such as dual AC resonance tracking (DART) and band excitation, where the response is recorded within a finite frequency range, typically around the first contact resonance. In this paper, we analyze and compare signal-to-noise ratios of the conventional single-frequency method with multi-frequency regimes of measuring surface displacements. Single-frequency detection ESM is demonstrated using a commercial AFM.


2007 ◽  
Vol 1034 ◽  
Author(s):  
V. A. Khomchenko ◽  
D. A. Kiselev ◽  
J. M. Vieira ◽  
Li Jian ◽  
A. M. L. Lopes ◽  
...  

AbstractInvestigation of crystal structure, magnetic and local ferroelectric properties of the diamagnetically-doped Bi1−xAxFeO3 (A= Ca, Sr, Pb, Ba; x= 0.2, 0.3) ceramic samples has been carried out. It has been shown that the solid solutions have a rhombohedrally distorted perovskite structure described by the space group R3c. Piezoresponse force microscopy data have revealed the existence of the spontaneous ferroelectric polarization in the samples at room temperature. Magnetization measurements have shown that the magnetic state of these compounds is determined by the ionic radius of the substituting elements. A-site substitution with the biggest ionic radius ions has been found to suppress the spiral spin structure of BiFeO3 and to result in the appearance of weak ferromagnetism. The magnetic properties have been discussed in terms of doping- induced changes in the magnetic anisotropy.


CORROSION ◽  
10.5006/2581 ◽  
2017 ◽  
Vol 74 (3) ◽  
pp. 312-325 ◽  
Author(s):  
Cheng Man ◽  
Chaofang Dong ◽  
Kui Xiao ◽  
Qiang Yu ◽  
Xiaogang Li

In situ atomic force microscopy, scanning Kelvin probe force microscopy, and potential pulse technology were used to study the pitting behavior induced by inclusions in AM355 martensitic stainless steel. The MnS-(Cr, Mn, Al)O duplex inclusion exhibited the highest sensitivity to the pitting corrosion with respect to the individual MnS and (Cr, Mn, Al)O inclusions. When exposed to a solution containing Cl−, the selective dissolution occurred on the sulfide segment of the duplex inclusion, leading to trenching along the oxide part. The dissolution mechanism of MnS segment in the duplex inclusion is similar to the individual MnS inclusion. The Cr depletion in the boundary layer at the inclusion/metal interface promoted the transition from metastable to stable pitting corrosion in the duplex inclusion.


2015 ◽  
Vol 1754 ◽  
pp. 69-74
Author(s):  
Ravi Gaikwad ◽  
Tinu Abraham ◽  
Aharnish Hande ◽  
Fatemeh Bakhtiari ◽  
Siddhartha Das ◽  
...  

ABSTRACTAtomic force microscopy is employed to study the structural changes in the morphology and physical characteristics of asphaltene aggregates as a function of temperature. The exotic fractal structure obtained by evaporation-driven asphaltene aggregates shows an interesting dynamics for a large range of temperatures from 25°C to 80°C. The changes in the topography, surface potential and adhesion are unnoticeable until 70°C. However, a significant change in the dynamics and material properties is displayed in the range of 70°C - 80°C, during which the aspahltene aggregates acquire ‘liquid-like’ mobility and fuse together. This behaviour is attributed to the transition from the pure amorphous phase to a crystalline liquid phase which occurs at approximately 70°C as shown by using Differential Scanning Calorimetry (DSC). Additionally, the charged nature of asphaltenes and bitumen is also explored using kelvin probe microscopy. Such observations can lead to the development of a rational approach to the fundamental understanding of asphaltene aggregation dynamics and may help in devising novel techniques for the handling and separation of asphaltene aggregates using dielectrophoretic methods.


2011 ◽  
Vol 5 (3) ◽  
pp. 139-147 ◽  
Author(s):  
Francisco Moura ◽  
Alexandre Simões ◽  
Carla Riccardi ◽  
Maria Zaghete ◽  
Jose Varela ◽  
...  

The effect of annealing atmospheres (Atamb, N2 and O2) on the electrical properties of Ba(Ti0.90Zr0.10 )O3:2V (BZT10:2V) ceramics obtained by the mixed oxide method was investigated. X-ray photoelectron spectroscopy (XPS) analysis indicates that oxygen vacancies present near Zr and Ti ions reduce ferroelectric properties, especially in samples treated in an ambient atmosphere (Atamb ). BZT10:2V ceramics sintered in a nitrogen atmosphere showed better dielectric behaviour at room temperature with a dielectric permittivity measured at a frequency of 10 kHz equal to 16800 with dielectric loss of 0.023. Piezoelectric force microscopy (PFM) images reveal improvement in the piezoelectric coefficient by sintering the sample under nitrogen atmosphere. Thus, BZT10:2V ceramics sintered under a nitrogen atmosphere can be useful for practical applications which include nonvolatile digital memories, spintronics and data-storage media.


2012 ◽  
Vol 1455 ◽  
Author(s):  
Oliver Ochedowski ◽  
Benedict Kleine Bußmann ◽  
Marika Schleberger

ABSTRACTWe have employed atomic force and Kelvin-Probe force microscopy to study graphene sheets exfoliated on TiO2 under the influence of local heating achieved by laser irradiation. Exfoliation and irradiation took place under ambient conditions, the measurements were performed in ultra high vacuum. We show that after irradiation times of 6 min, an increase of the surface potential is observed which indicates a decrease of p-type carrier concentration. We attribute this effect to the removal of adsorbates like water and oxygen. After irradiation times of 12 min our topography images reveal severe structural modifications of graphene. These resemble the nanocrystallite network which form on graphene/SiO2 but after much longer irradiation times. From our results we propose that short laser heating at moderate powers might offer a way to clean graphene without inducing unwanted structural modifications.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4447
Author(s):  
Karlis A. Gross ◽  
Christiane Petzold ◽  
Liene Pluduma-LaFarge ◽  
Maris Kumermanis ◽  
Håvard J. Haugen

Hydroxyapatite coatings need similarly shaped splats as building blocks and then a homogeneous microstructure to unravel the structural and chemical hierarchy for more refined improvements to implant surfaces. Coatings were thermally sprayed with differently sized powders (20–40, 40–63 and 63–80 µm) to produce flattened homogeneous splats. The surface was characterized for splat shape by profilometry and Atomic force microscopy (AFM), crystal size by AFM, crystal orientation by X-ray diffraction (XRD) and structural variations by XRD. Chemical composition was assessed by phase analysis, but variations in chemistry were detected by XRD and Raman spectroscopy. The resulting surface electrical potential was measured by Kelvin probe AFM. Five levels of structural hierarchy were suggested: the coating, the splat, oriented crystals, alternate layers of oxyapatite and hydroxyapatite (HAp) and the suggested anion orientation. Chemical hierarchy was present over a lower range of order for smaller splats. Coatings made from smaller splats exhibited a greater electrical potential, inferred to arise from oxyapatite, and supplemented by ordered OH− ions in a rehydroxylated surface layer. A model has been proposed to show the influence of structural hierarchy on the electrical surface potential. Structural hierarchy is proposed as a means to further refine the properties of implant surfaces.


Sign in / Sign up

Export Citation Format

Share Document