3D printing of liquid metals as fugitive inks for fabrication of 3D microfluidic channels

Lab on a Chip ◽  
2016 ◽  
Vol 16 (10) ◽  
pp. 1812-1820 ◽  
Author(s):  
Dishit P. Parekh ◽  
Collin Ladd ◽  
Lazar Panich ◽  
Khalil Moussa ◽  
Michael D. Dickey

This paper demonstrates a simple method to fabricate 3D microchannels at room temperature by printing liquid metal as a sacrificial template.

Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3753
Author(s):  
Bingbing Xu ◽  
Feng Ye ◽  
Guangtao Chang ◽  
Ruoxin Li

Liquid metals show unparalleled advantages in printable circuits, flexible wear, drug carriers, and electromagnetic shielding. However, the efficient and large-scale preparation of liquid metal nanodroplets (LM NDs) remains a significant challenge. Here, we propose a simple and efficient method for the large-scale preparation of stable eutectic gallium indium nanodroplets (EGaIn NDs). We compared different preparation methods and found that droplets with smaller particle sizes could quickly be produced using a shaking technique. The size of EGaIn NDs produced using this technique can reach 200 nm in 30 min and 100 nm in 240 min. Benefiting from the simple method, various surfactants can directly modify the surface of the EGaIn NDs to stabilize the prepared droplets. In addition, we discovered that shaking in an ice bath produced spherical nanodroplets, and after shaking for 30 min in a non-ice bath, rod-shaped gallium oxide hydroxide (GaOOH) appeared. Furthermore, the EGaIn NDs we produced have excellent stability—after storage at room temperature for 30 days, the particle size and morphology change little. The excellent stability of the produced EGaIn NDs provides a wider application of liquid metals in the fields of drug delivery, electromagnetic shielding, conductive inks, printed circuits, etc.


2019 ◽  
Vol 7 (2) ◽  
pp. 366-372 ◽  
Author(s):  
Frank F Yun ◽  
Zhenwei Yu ◽  
Yahua He ◽  
Lei Jiang ◽  
Zhao Wang ◽  
...  

Abstract Room-temperature liquid metal is discovered to be capable of penetrating through macro- and microporous materials by applying a voltage. The liquid metal penetration effects are demonstrated in various porous materials such as tissue paper, thick and fine sponges, fabrics, and meshes. The underlying mechanism is that the high surface tension of liquid metal can be significantly reduced to near-zero due to the voltage-induced oxidation of the liquid metal surface in a solution. It is the extremely low surface tension and gravity that cause the liquid metal to superwet the solid surface, leading to the penetration phenomena. These findings offer new opportunities for novel microfluidic applications and could promote further discovery of more exotic fluid states of liquid metals.


2012 ◽  
Vol 22 (12) ◽  
pp. 2624-2631 ◽  
Author(s):  
Tanya Hutter ◽  
Wolfgang-Andreas C. Bauer ◽  
Stephen R. Elliott ◽  
Wilhelm T. S. Huck

2021 ◽  
Author(s):  
Olawale Oloye ◽  
James D Riches ◽  
Anthony Peter O'Mullane

Room temperature liquid metals are an emerging class of materials for a variety of heterogeneous catalytic reactions. In this work we explore the use of Ga based liquid metals as...


2021 ◽  
Author(s):  
Cerwyn Chiew ◽  
Maria Morris ◽  
Mohammad H Malakooti

Room temperature liquid metals are an emerging class of functional materials with applications in a variety of soft intelligent systems. In recent years, efforts have been made to integrate liquid...


Author(s):  
Lei Wang ◽  
Jing Liu

Flexible electronics and 3D printing are quickly reshaping the world in many aspects spanning from science, technology to industry and social society. However, there still exist many barriers to impede further progress of the areas. One of the biggest bottlenecks lies in the strong shortage of appropriate functional inks. Among the many printable materials ever tried such as conductive polymers, powdered plastic, metal particles or other adhesive materials, the liquid metal or its alloy is quickly emerging as a powerful electronic ink with diverse capabilities from which direct printing of flexible electronics and room temperature 3D printing for manufacturing metal structures are enabled. All these fabrication capabilities are attributed to the unique properties of such metal’s low melting point (generally less than 100 °C), flowable feature and high electrical conductivity etc. To better push forward the research and application of the liquid metal printed electronics and 3D manufacture, this article is dedicated to present an overview on the fundamental research advancements in processing and developing the liquid metal inks. Particularly, the flow, thermal, phase change and electrical properties of a group of typical liquid metals and their alloy inks will be systematically summarized and comparatively evaluated. Some of the practical applications of these materials in a wide variety of flexible electronics fabrication, 3D printing and medical sensors etc. will be briefly illustrated. Further, we also explained the basic categories of the liquid metal material genome towards discovering new functional alloy ink materials as initiated in the authors’ lab and interpret the important scientific and technical challenges lying behind. Perspective and future potentials of the liquid metal inks in more areas were also suggested.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Junyao Xie ◽  
Xueqiu You ◽  
Yuqing Huang ◽  
Zurong Ni ◽  
Xinchang Wang ◽  
...  

AbstractMagnetic resonance (MR) technology has been widely employed in scientific research, clinical diagnosis and geological survey. However, the fabrication of MR radio frequency probeheads still face difficulties in integration, customization and miniaturization. Here, we utilized 3D printing and liquid metal filling techniques to fabricate integrative radio frequency probeheads for MR experiments. The 3D-printed probehead with micrometer precision generally consists of liquid metal coils, customized sample chambers and radio frequency circuit interfaces. We screened different 3D printing materials and optimized the liquid metals by incorporating metal microparticles. The 3D-printed probeheads are capable of performing both routine and nonconventional MR experiments, including in situ electrochemical analysis, in situ reaction monitoring with continues-flow paramagnetic particles and ions separation, and small-sample MR imaging. Due to the flexibility and accuracy of 3D printing techniques, we can accurately obtain complicated coil geometries at the micrometer scale, shortening the fabrication timescale and extending the application scenarios.


2018 ◽  
Vol 5 (1) ◽  
pp. 36-40 ◽  
Author(s):  
Zhenwei Yu ◽  
Frank F. Yun ◽  
Xiaolin Wang

Non-contact, maskless, voltage induced electrochemical lithography for liquid metals was demonstrated at room temperature.


RSC Advances ◽  
2021 ◽  
Vol 11 (22) ◽  
pp. 13245-13255
Author(s):  
Mehdi Davoodi ◽  
Fatemeh Davar ◽  
Mohammad R. Rezayat ◽  
Mohammad T. Jafari ◽  
Mehdi Bazarganipour ◽  
...  

New nanocomposite of zeolitic imidazolate framework-67@magnesium aluminate spinel (ZIF-67@MgAl2O4) has been fabricated by a simple method at room temperature with different weight ratios.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3449
Author(s):  
Ireneusz Stefaniuk ◽  
Werner Obermayr ◽  
Volodymyr D. Popovych ◽  
Bogumił Cieniek ◽  
Iwona Rogalska

In this paper, we show a simple method of producing ferromagnetic materials with a Curie temperature above room temperature. The electron paramagnetic resonance (EPR) spectra of Cd1−xCrxTe (0.002 < x < 0.08) were measured with a dependence on temperature (82 K < T < 381 K). Obtained EPR lines were fitted to a Lorentz-shaped curve. The temperature dependencies of the parameters of the EPR lines, such as the peak-to-peak linewidth (Hpp), the intensity (A), as well as the resonance field (Hr), were studied. Ferromagnetism was noticed in samples at high temperatures (near room temperature). For a sample with a nominal concentration of chrome of x = 0.05, a very strong intrinsic magnetic field is observed. The value of the effective gyromagnetic factor for this sample is ge = 30 at T = 240 K. An increase of chrome concentration above x = 0.05 reduces the ferromagnetic properties considerably. Analysis of the temperature dependencies of the integral intensity of EPR spectra was carried out using the Curie–Weiss law and the paramagnetic Curie temperature was obtained.


Sign in / Sign up

Export Citation Format

Share Document