scholarly journals 3D-printed integrative probeheads for magnetic resonance

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Junyao Xie ◽  
Xueqiu You ◽  
Yuqing Huang ◽  
Zurong Ni ◽  
Xinchang Wang ◽  
...  

AbstractMagnetic resonance (MR) technology has been widely employed in scientific research, clinical diagnosis and geological survey. However, the fabrication of MR radio frequency probeheads still face difficulties in integration, customization and miniaturization. Here, we utilized 3D printing and liquid metal filling techniques to fabricate integrative radio frequency probeheads for MR experiments. The 3D-printed probehead with micrometer precision generally consists of liquid metal coils, customized sample chambers and radio frequency circuit interfaces. We screened different 3D printing materials and optimized the liquid metals by incorporating metal microparticles. The 3D-printed probeheads are capable of performing both routine and nonconventional MR experiments, including in situ electrochemical analysis, in situ reaction monitoring with continues-flow paramagnetic particles and ions separation, and small-sample MR imaging. Due to the flexibility and accuracy of 3D printing techniques, we can accurately obtain complicated coil geometries at the micrometer scale, shortening the fabrication timescale and extending the application scenarios.

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5032
Author(s):  
Alec Ikei ◽  
James Wissman ◽  
Kaushik Sampath ◽  
Gregory Yesner ◽  
Syed N. Qadri

In the functional 3D-printing field, poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) has been shown to be a more promising choice of material over polyvinylidene fluoride (PVDF), due to its ability to be poled to a high level of piezoelectric performance without a large mechanical strain ratio. In this work, a novel presentation of in situ 3D printing and poling of PVDF-TrFE is shown with a d33 performance of up to 18 pC N−1, more than an order of magnitude larger than previously reported in situ poled polymer piezoelectrics. This finding paves the way forward for pressure sensors with much higher sensitivity and accuracy. In addition, the ability of in situ pole sensors to demonstrate different performance levels is shown in a fully 3D-printed five-element sensor array, accelerating and increasing the design space for complex sensing arrays. The in situ poled sample performance was compared to the performance of samples prepared through an ex situ corona poling process.


Author(s):  
Austin Smith ◽  
Hamzeh Bardaweel

In this work a flexible strain sensor is fabricated using Fused Deposition Modeling (FDM) 3D printing technique. The strain sensor is fabricated using commercially available flexible Thermoplastic Polyurethane (TPU) filaments and liquid metal Galinstan Ga 68.5% In 21% Sn 10%. The strain sensor consists of U-shape 2.34mm long and 0.2mm deep channels embedded inside a TPU 3D printed structure. The performance of the strain sensor is measured experimentally. Gauge Factor is estimated by measuring change in electric resistance when the sensor is subject to 13.2% – 38.6% strain. Upon straining and unstraining, results from characterization tests show high linearity in the range of 13.2% to 38.6% strain with very little hysteresis. However, changes due to permanent deformations are a limiting factor in the usefulness of these sensors because these changes limit the consistency of the device. FDM 3D printing shows promise as a method for fabricating flexible strain sensors. However, more investigation is needed to look at the effects of geometries and 3D printing process parameters on the yield elongation of the flexible filaments. Additionally, more investigation is needed to observe the effect of distorted dimensions of the 3D printed channels on the sensitivity of the strain sensor. It is anticipated that successful implementation of these commercially available filaments and FDM 3D printers will lead to reduction in cost and complexity of developing these flexible sensors.


Author(s):  
Seyed M. Allameh ◽  
Roger Miller ◽  
Abdullah Almuzaini

Abstract This study presents the preliminary results of in-situ tests conducted on structural biomimicked composites built by 3D printing. Construction industry is looking seriously into 3D printed structures that can be incorporated into the conventional buildings. Further refinement of materials and processing will lead to the 3D printing of buildings in future. The advantages afforded by 3D printing are unrivaled, creating unprecedented opportunities to express art, economics, environmentally friendly designs, lightweight schemes, among many others. To determine the reliability and suitability of structural composites for use in construction, it is important to test these in shapes, and geometries that are appropriate to 3D printing. Combinatorial materials research allows the fabrication and in-situ testing of composites made by mix and match of various materials. This study focuses on the characterization of mechanical behavior of biomimicked composites fabricated by a 3D printer. To accomplish this, a meter-sized 3D printer was equipped with material dispensers as well as load sensors. Composites were made of various construction materials, adhesive, and reinforcement and subsequently tested by the same printer. The results are presented, and the implications of findings are discussed on their impact on the construction industry.


Author(s):  
Zachary A. Giannuzzi ◽  
Lucille A. Giannuzzi ◽  
Kathleen A. Gehoski ◽  
William J. Mahoney

Abstract Practice and training samples have been manufactured using 3D-printing methods. These 3D-printed samples mimic the exact geometry of focused ion beam (FIB) prepared specimens and can be used to help master ex situ and in situ lift out micromanipulation methods. An additively manufactured array of samples yields numerous samples needed for repetition and deliberate practice necessary to master the lift out and micromanipulation steps. The 3D-printed samples are cost effective and negates expensive FIB time needed to prepare FIB specimens.


2006 ◽  
Vol 508 ◽  
pp. 275-280 ◽  
Author(s):  
N. Babcsán ◽  
F. Garcia-Moreno ◽  
D. Leitlmeier ◽  
John Banhart

Metal foams are quite a challenge to materials scientists due to their difficult manufacturing. In all processes the foam develops in the liquid or semiliquid state. Liquid-metal foams are complex fluids which contain liquid metals, solid particles and gas bubbles at the same time. An X-ray transparent furnace was developed to monitor liquid metal foam evolution. Aluminium foams - similar to the commercial Metcomb foams - were produced by feeding argon or air gas bubbles into an aluminium composite melt. The foam evolution was observed in-situ by X-ray radioscopy under normal gravity. Drainage and rupture were evaluated during the 5 min foam decay and 2 min solidification. Argon blown foams showed significant drainage and cell wall rupture during the first 20 s of foam decay. Air blown foams were stable and neither drainage nor rupture occurred. We demonstrated the feasibility of experiments during parabolic flight or drop tower campaigns. However, the development of a foam generator for low gravity is needed.


Lab on a Chip ◽  
2022 ◽  
Author(s):  
Calvin Bok Sun Goh ◽  
Clariss Hui Peng Goh ◽  
Li Wen Wong ◽  
Wai Teng Cheng ◽  
Catherine Mary Yule ◽  
...  

The 3D-printed iChip version made from thermoplastics or photopolymers can isolate microbial populations of a peat swamp in situ with a population profile different from that isolated via the standard in vitro Petri dish cultivation method.


Author(s):  
Lei Wang ◽  
Jing Liu

Flexible electronics and 3D printing are quickly reshaping the world in many aspects spanning from science, technology to industry and social society. However, there still exist many barriers to impede further progress of the areas. One of the biggest bottlenecks lies in the strong shortage of appropriate functional inks. Among the many printable materials ever tried such as conductive polymers, powdered plastic, metal particles or other adhesive materials, the liquid metal or its alloy is quickly emerging as a powerful electronic ink with diverse capabilities from which direct printing of flexible electronics and room temperature 3D printing for manufacturing metal structures are enabled. All these fabrication capabilities are attributed to the unique properties of such metal’s low melting point (generally less than 100 °C), flowable feature and high electrical conductivity etc. To better push forward the research and application of the liquid metal printed electronics and 3D manufacture, this article is dedicated to present an overview on the fundamental research advancements in processing and developing the liquid metal inks. Particularly, the flow, thermal, phase change and electrical properties of a group of typical liquid metals and their alloy inks will be systematically summarized and comparatively evaluated. Some of the practical applications of these materials in a wide variety of flexible electronics fabrication, 3D printing and medical sensors etc. will be briefly illustrated. Further, we also explained the basic categories of the liquid metal material genome towards discovering new functional alloy ink materials as initiated in the authors’ lab and interpret the important scientific and technical challenges lying behind. Perspective and future potentials of the liquid metal inks in more areas were also suggested.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 474
Author(s):  
Sandya Shiranthi Athukorala ◽  
Tuan Sang Tran ◽  
Rajkamal Balu ◽  
Vi Khanh Truong ◽  
James Chapman ◽  
...  

Electrically conductive hydrogels (ECHs), an emerging class of biomaterials, have garnered tremendous attention due to their potential for a wide variety of biomedical applications, from tissue-engineered scaffolds to smart bioelectronics. Along with the development of new hydrogel systems, 3D printing of such ECHs is one of the most advanced approaches towards rapid fabrication of future biomedical implants and devices with versatile designs and tuneable functionalities. In this review, an overview of the state-of-the-art 3D printed ECHs comprising conductive polymers (polythiophene, polyaniline and polypyrrole) and/or conductive fillers (graphene, MXenes and liquid metals) is provided, with an insight into mechanisms of electrical conductivity and design considerations for tuneable physiochemical properties and biocompatibility. Recent advances in the formulation of 3D printable bioinks and their practical applications are discussed; current challenges and limitations of 3D printing of ECHs are identified; new 3D printing-based hybrid methods for selective deposition and fabrication of controlled nanostructures are highlighted; and finally, future directions are proposed.


Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 815 ◽  
Author(s):  
Lijun Shan ◽  
Abdul Kadhum ◽  
M.S.H. Al-Furjan ◽  
Wenjian Weng ◽  
Youping Gong ◽  
...  

It is well known that three-dimensional (3D) printing is an emerging technology used to produce customized implants and surface characteristics of implants, strongly deciding their osseointegration ability. In this study, Ti alloy microspheres were printed under selected rational printing parameters in order to tailor the surface micro-characteristics of the printed implants during additive manufacturing by an in situ, controlled way. The laser path and hatching space were responsible for the appearance of the stripy structure (S), while the bulbous structure (B) and bulbous–stripy composite surface (BS) were determined by contour scanning. A nano-sized structure could be superposed by hydrothermal treatment. The cytocompatibility was evaluated by culturing Mouse calvaria-derived preosteoblastic cells (MC3T3-E1). The results showed that three typical microstructured surfaces, S, B, and BS, could be achieved by varying the 3D printing parameters. Moreover, the osteogenic differentiation potential of the S, B, and BS surfaces could be significantly enhanced, and the addition of nano-sized structures could be further improved. The BS surface with nano-sized structure demonstrated the optimum osteogenic differentiation potential. The present research demonstrated an in situ, controlled way to tailor and optimize the surface structures in micro-size during the 3D printing process for an implant with higher osseointegration ability.


Sign in / Sign up

Export Citation Format

Share Document