Synthesis and high cycle performance of Li2ZnTi3O8/C anode material promoted by asphalt as a carbon precursor

RSC Advances ◽  
2016 ◽  
Vol 6 (55) ◽  
pp. 49298-49306 ◽  
Author(s):  
Yurong Ren ◽  
Peng Lu ◽  
Xiaobing Huang ◽  
Jianning Ding ◽  
Haiyan Wang

A carbon layer (ca. 3 nm) formed on the surface of Li2ZnTi3O8 nanoparticles (ca. 30 nm) which is favorable to improve the electronic conductivity and lithium ion diffusion, resulting in improved rate capability and cycling performance.

2013 ◽  
Vol 1540 ◽  
Author(s):  
Chia-Yi Lin ◽  
Chien-Te Hsieh ◽  
Ruey-Shin Juang

ABSTRACTAn efficient microwave-assisted polyol (MP) approach is report to prepare SnO2/graphene hybrid as an anode material for lithium ion batteries. The key factor to this MP method is to start with uniform graphene oxide (GO) suspension, in which a large amount of surface oxygenate groups ensures homogeneous distribution of the SnO2 nanoparticles onto the GO sheets under the microwave irradiation. The period for the microwave heating only takes 10 min. The obtained SnO2/graphene hybrid anode possesses a reversible capacity of 967 mAh g-1 at 0.1 C and a high Coulombic efficiency of 80.5% at the first cycle. The cycling performance and the rate capability of the hybrid anode are enhanced in comparison with that of the bare graphene anode. This improvement of electrochemical performance can be attributed to the formation of a 3-dimensional framework. Accordingly, this study provides an economical MP route for the fabrication of SnO2/graphene hybrid as an anode material for high-performance Li-ion batteries.


RSC Advances ◽  
2014 ◽  
Vol 4 (78) ◽  
pp. 41281-41286 ◽  
Author(s):  
Wenjuan Jiang ◽  
Weiyao Zeng ◽  
Zengsheng Ma ◽  
Yong Pan ◽  
Jianguo Lin ◽  
...  

Good electronic conductivity and mechanical properties are obtained by introducing CNTs into an ANSO@CNTs anode material. The anode possesses a super cycling performance and a high rate capability because the porous structure facilitates liquid electrolyte diffusion into active materials.


2015 ◽  
Vol 3 (12) ◽  
pp. 6392-6401 ◽  
Author(s):  
Bangjun Guo ◽  
Ke Yu ◽  
Hao Fu ◽  
Qiqi Hua ◽  
Ruijuan Qi ◽  
...  

Firework-shaped TiO2 microspheres embedded with few-layer MoS2 are prepared by a novel strategy, and the composite electrode exhibits excellent cycling performance, high capacity and rate capability compared to pure MoS2 and TiO2 electrodes.


2014 ◽  
Vol 07 (06) ◽  
pp. 1440013 ◽  
Author(s):  
Xiangjun Li ◽  
Hongxing Xin ◽  
Xiaoying Qin ◽  
Xueqin Yuan ◽  
Di Li ◽  
...  

Lithium and Mn rich solid solution materials Li [ Li 0.26 Ni 0.07 Co 0.07 Mn 0.56] O 2 were synthesized by a carbonate co-precipitation method and modified with a layer of graphene. The graphene-modified cathodes exhibit improved rate capability and cycling performance as compared to the bare cathodes. Electrochemical impedance spectroscopy (EIS) analyses reveal that the improved electrochemical performances are due to acceleration kinetics of lithium-ion diffusion and the charge transfer reaction of the graphene-modified cathodes.


2014 ◽  
Vol 16 (39) ◽  
pp. 21114-21118 ◽  
Author(s):  
Pooja M. Panchmatia ◽  
A. Robert Armstrong ◽  
Peter G. Bruce ◽  
M. Saiful Islam

Layered Li1+xV1−xO2 has attracted recent interest as a potential low voltage and high energy density anode material for lithium-ion batteries.


2019 ◽  
Vol 9 (20) ◽  
pp. 4218 ◽  
Author(s):  
Yijing Zheng ◽  
Lisa Pfäffl ◽  
Hans Jürgen Seifert ◽  
Wilhelm Pfleging

For the development of thick film graphite electrodes, a 3D battery concept is applied, which significantly improves lithium-ion diffusion kinetics, high-rate capability, and cell lifetime and reduces mechanical tensions. Our current research indicates that 3D architectures of anode materials can prevent cells from capacity fading at high C-rates and improve cell lifespan. For the further research and development of 3D battery concepts, it is important to scientifically understand the influence of laser-generated 3D anode architectures on lithium distribution during charging and discharging at elevated C-rates. Laser-induced breakdown spectroscopy (LIBS) is applied post-mortem for quantitatively studying the lithium concentration profiles within the entire structured and unstructured graphite electrodes. Space-resolved LIBS measurements revealed that less lithium-ion content could be detected in structured electrodes at delithiated state in comparison to unstructured electrodes. This result indicates that 3D architectures established on anode electrodes can accelerate the lithium-ion extraction process and reduce the formation of inactive materials during electrochemical cycling. Furthermore, LIBS measurements showed that at high C-rates, lithium-ion concentration is increased along the contour of laser-generated structures indicating enhanced lithium-ion diffusion kinetics for 3D anode materials. This result is correlated with significantly increased capacity retention. Moreover, the lithium-ion distribution profiles provide meaningful information about optimizing the electrode architecture with respect to film thickness, pitch distance, and battery usage scenario.


2021 ◽  
Vol 1028 ◽  
pp. 138-143
Author(s):  
Iman Rahayu ◽  
Anggi Suprabawati ◽  
Vina M. Puspitasari ◽  
Sahrul Hidayat ◽  
Atiek Rostika Noviyanti

Lithium ion batteries with LiFePO4 cathode have become the focus of research because they are eco-friendly, stable, high average voltage (3.5 V), and high theoretical capacity (170 mAh/g). However, LiFePO4 has disadvantages such as low electrical conductivity (~10-9 S/cm) and low lithium ion diffusion coefficient (~10-14-10-15 cm2/s) that can inhibit its application as a lithium ion battery cathode material. To increase the electronic conductivity of LiFePO4, it can be done by adding carbon as a coating material, then doping gadolinium metal ions because it has a radius similar to Fe, and increasing sintering temperature. Optimizing the sintering temperature can control particle growth and research was study the sintering temperature of the electronic conductivity of LiFeGdPO4/C and obtain the optimum sintering temperature at LiFeGdPO4/C. The carbothermal reduction method used in synthesis, with a variation of sintering temperature of 800°C, 830°C, 850°C, 870°C, and 900°C using reagents LiH2PO4, Fe2O3, Gd2O3, and carbon black. Furthermore the samples were characterized using XRD, SEM-EDS, and four-point probes. The results of the study were expected to increase the conductivity of LiFePO4. The results show the effect of sintering temperature can increase the electronic conductivity of LiFeGdPO4/C. Samples with a sintering temperature 850°C have the highest conductivity among all temperature variations with a value of 1.11 × 10-5 S cm-1.


RSC Advances ◽  
2015 ◽  
Vol 5 (128) ◽  
pp. 105643-105650 ◽  
Author(s):  
Yongliang Li ◽  
Wei Zhang ◽  
Huihua Cai ◽  
Jingwei Wang ◽  
Xiangzhong Ren ◽  
...  

The addition of ZnO significantly improved the cycling performance and rate capability of SnSb alloy anode material.


Sign in / Sign up

Export Citation Format

Share Document