Thermoelectric performance of conducting aerogels based on carbon nanotube/silver nanocomposites with ultralow thermal conductivity

RSC Advances ◽  
2016 ◽  
Vol 6 (111) ◽  
pp. 109878-109884 ◽  
Author(s):  
Xijing Sun ◽  
Jinghong Zhao ◽  
Lijuan Zhao ◽  
Jinrong Wu ◽  
Quan Li

New conducting aerogels based on carbon nanotube (CNT) and silver (Ag) nanocomposites have been systematically investigated.

RSC Advances ◽  
2015 ◽  
Vol 5 (80) ◽  
pp. 65328-65336 ◽  
Author(s):  
Nader Farahi ◽  
Sagar Prabhudev ◽  
Matthieu Bugnet ◽  
Gianluigi A. Botton ◽  
Jianbao Zhao ◽  
...  

Adding multi wall carbon nanotubes to Mg2Si0.877Ge0.1Bi0.023 led to an increased power factor via energy filtering as well as a lowered thermal conductivity via increased phonon scattering, and thus an enhanced thermoelectric performance.


2021 ◽  
Vol 5 (6) ◽  
pp. 1734-1746
Author(s):  
D. Sidharth ◽  
A. S. Alagar Nedunchezhian ◽  
R. Akilan ◽  
Anup Srivastava ◽  
Bhuvanesh Srinivasan ◽  
...  

The power factor of GeSe enhanced and thermal conductivity decreased by Te substitution and thereby, GeSe0.80Te0.20 exhibits high ZT.


Author(s):  
Zihang Liu ◽  
Wenhao Zhang ◽  
Weihong Gao ◽  
Takao Mori

Discovering materials with the intrinsically low lattice thermal conductivity κlat is an important route for achieving high thermoelectric performance. In reality, the conventional synthetic approach, however, relies on trial and...


2021 ◽  
Vol 143 (15) ◽  
pp. 5978-5989
Author(s):  
Hongyao Xie ◽  
Shiqiang Hao ◽  
Trevor P. Bailey ◽  
Songting Cai ◽  
Yinying Zhang ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (25) ◽  
pp. 15486-15496
Author(s):  
Enamul Haque

The layered structure, and presence of heavier elements Rb/Cs and Sb induce high anharmonicity, low Debye temperature, intense phonon scattering, and hence, low lattice thermal conductivity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Natsumi Komatsu ◽  
Yota Ichinose ◽  
Oliver S. Dewey ◽  
Lauren W. Taylor ◽  
Mitchell A. Trafford ◽  
...  

AbstractLow-dimensional materials have recently attracted much interest as thermoelectric materials because of their charge carrier confinement leading to thermoelectric performance enhancement. Carbon nanotubes are promising candidates because of their one-dimensionality in addition to their unique advantages such as flexibility and light weight. However, preserving the large power factor of individual carbon nanotubes in macroscopic assemblies has been challenging, primarily due to poor sample morphology and a lack of proper Fermi energy tuning. Here, we report an ultrahigh value of power factor (14 ± 5 mW m−1 K−2) for macroscopic weavable fibers of aligned carbon nanotubes with ultrahigh electrical and thermal conductivity. The observed giant power factor originates from the ultrahigh electrical conductivity achieved through excellent sample morphology, combined with an enhanced Seebeck coefficient through Fermi energy tuning. We fabricate a textile thermoelectric generator based on these carbon nanotube fibers, which demonstrates high thermoelectric performance, weavability, and scalability. The giant power factor we observe make these fibers strong candidates for the emerging field of thermoelectric active cooling, which requires a large thermoelectric power factor and a large thermal conductivity at the same time.


2005 ◽  
Vol 87 (2) ◽  
pp. 023105 ◽  
Author(s):  
J. C. Caylor ◽  
K. Coonley ◽  
J. Stuart ◽  
T. Colpitts ◽  
R. Venkatasubramanian

2009 ◽  
Vol 24 (2) ◽  
pp. 430-435 ◽  
Author(s):  
D. Li ◽  
H.H. Hng ◽  
J. Ma ◽  
X.Y. Qin

The thermoelectric properties of Nb-doped Zn4Sb3 compounds, (Zn1–xNbx)4Sb3 (x = 0, 0.005, and 0.01), were investigated at temperatures ranging from 300 to 685 K. The results showed that by substituting Zn with Nb, the thermal conductivities of all the Nb-doped compounds were lower than that of the pristine β-Zn4Sb3. Among the compounds studied, the lightly substituted (Zn0.995Nb0.005)4Sb3 compound exhibited the best thermoelectric performance due to the improvement in both its electrical resistivity and thermal conductivity. Its figure of merit, ZT, was greater than the undoped Zn4Sb3 compound for the temperature range investigated. In particular, the ZT of (Zn0.995Nb0.005)4Sb3 reached a value of 1.1 at 680 K, which was 69% greater than that of the undoped Zn4Sb3 obtained in this study.


Sign in / Sign up

Export Citation Format

Share Document