Pt–Cu hierarchical quasi great dodecahedrons with abundant twinning defects for hydrogen evolution

2017 ◽  
Vol 53 (51) ◽  
pp. 6922-6925 ◽  
Author(s):  
Ruijie Huang ◽  
Zhongti Sun ◽  
Sheng Chen ◽  
Siyu Wu ◽  
Zeqi Shen ◽  
...  

Hierarchical metal nanostructures which exhibit an open structure and a high density of twin defects accessible to reactants hold great promise in catalysis.

2020 ◽  
Vol 8 (13) ◽  
pp. 6238-6244 ◽  
Author(s):  
Iuliia Romanenko ◽  
Ashwene Rajagopal ◽  
Christof Neumann ◽  
Andrey Turchanin ◽  
Carsten Streb ◽  
...  

The integration of molecular photosensitizers and catalysts into functional soft matter supports holds great promise for future energy conversion technologies.


2020 ◽  
Vol 13 (9) ◽  
pp. 3110-3118 ◽  
Author(s):  
Zhao Li ◽  
Wenhan Niu ◽  
Zhenzhong Yang ◽  
Abdelkader Kara ◽  
Qi Wang ◽  
...  

The alkaline hydrogen evolution reaction (A-HER) holds great promise for clean hydrogen fuel generation but its practical utilization is severely hindered by the sluggish kinetics for water dissociation in alkaline solutions.


2020 ◽  
Vol 56 (2) ◽  
pp. 305-308 ◽  
Author(s):  
Jing Li ◽  
Yuanwu Liu ◽  
Chen Liu ◽  
Wentian Huang ◽  
Ying Zhang ◽  
...  

Ultra-high-density ReSe2 nanoflakes with uniform small 2D size were grown on porous carbon cloth by CVD. The 2D/3D construction gave more active catalytic sites, and the small size effect and the interfacial C–Se bonding facilitated electron transport between ReSe2 and PCC.


2019 ◽  
Vol 7 (14) ◽  
pp. 8602-8608 ◽  
Author(s):  
Yunmei Du ◽  
Mingjuan Zhang ◽  
Zuochao Wang ◽  
Yanru Liu ◽  
Yongjun Liu ◽  
...  

Hydrogen evolution reaction (HER) via electrocatalysis using cost-efficient bimetallic phosphide as electrocatalyst holds a great promise for environmentally friendly energy technologies.


2020 ◽  
Vol 24 (11-12) ◽  
pp. 2763-2771
Author(s):  
Abhishek Lahiri ◽  
Guozhu Li ◽  
Frank Endres

Abstract A rational design of an efficient and inexpensive electrocatalyst for water splitting still remains a challenge. Porous conducting polymers are attractive materials which not only provide a high surface area for electrocatalysis but also absorb light which can be harnessed in photoelectrocatalysis. Here, a novel and inexpensive electrochemical approach is developed to obtain nanoporous conducting copolymers with tunable light absorbance and porosity. By fine-tuning the copolymer composition and upon heat treatment, an excellent electrocatalytic hydrogen evolution reaction (HER) was achieved in alkaline solution with an overpotential of just 77 mV to obtain a current density of 10 mA cm−2. Such an overpotential is remarkably low compared with other reported values for polymers in an alkaline medium. The nanoporous copolymer developed here shows a great promise of using metal-free electrocatalysts and brings about new avenues for exploitation of these porous conducting polymers.


Author(s):  
Ibrahim Lotfy ◽  
Maen Farhat ◽  
Mohsen A Issa

Railroad spikes represent a vital component of the rail track system, as they fasten the rail to the supporting crossties. Thus, it is important to understand its behavior and effect on the fastening assembly to mitigate any local failure, which, in turn, could lead to system deterioration or damage. Currently, alternative solutions to the traditional hardwood timber crossties are increasing being adopted by the railroad industry in the USA, with recycled plastic composite crossties being among the available alternatives. Their sustainably, environmental benefits, durability and ease of installation render them an attractive and competitive solution. Several research programs have studied this material and its fastening system in the past; however, additional research is required to fully understand the behavior of these materials and their interactions with the fastening system components. This paper presents an investigation that aims to understand and assess the performance of typical railroad spikes used for recycled high-density-polyethylene crossties. The study encompassed a comprehensive experimental investigation and analytical finite element modeling. The testing program evaluated railroad spikes using static testing methods recommended by the American Railway Engineering and Maintenance-of-Way Association (AREMA) manual. These tests addressed the rail spike pullout and lateral restraint for both screw and cut spikes. Finite element models were constructed and calibrated using the data obtained from the experimental program in order to extrapolate on the experimental results and predict the behavior of full-scale systems beyond the scale of the laboratory. The results observed in this study showed great promise, surpassing all the AREMA recommendations, which highlights the potential of these materials if properly optimized and engineered. Screw spikes exhibited a very good performance, surpassing the minimum recommendations by a significant margin (up to more than 200%) and are thus are highly recommended for future implementation.


Sign in / Sign up

Export Citation Format

Share Document