Enhanced current rectification and self-powered photoresponse in multilayer p-MoTe2/n-MoS2 van der Waals heterojunctions

Nanoscale ◽  
2017 ◽  
Vol 9 (30) ◽  
pp. 10733-10740 ◽  
Author(s):  
Bin Wang ◽  
Shengxue Yang ◽  
Cong Wang ◽  
Minghui Wu ◽  
Li Huang ◽  
...  

The vertically stacked MoTe2/MoS2 p–n heterojunctions have excellent electronic and optoelectronic characteristics with a type-II band alignment.

2021 ◽  
Vol 23 (6) ◽  
pp. 3963-3973
Author(s):  
Jianxun Song ◽  
Hua Zheng ◽  
Minxia Liu ◽  
Geng Zhang ◽  
Dongxiong Ling ◽  
...  

The structural, electronic and optical properties of a new vdW heterostructure, C2N/g-ZnO, with an intrinsic type-II band alignment and a direct bandgap of 0.89 eV at the Γ point are extensively studied by DFT calculations.


2019 ◽  
Vol 716 ◽  
pp. 155-161 ◽  
Author(s):  
Khang D. Pham ◽  
Nguyen N. Hieu ◽  
Le M. Bui ◽  
Huynh V. Phuc ◽  
Bui D. Hoi ◽  
...  

2018 ◽  
Vol 98 (12) ◽  
Author(s):  
A. Chaves ◽  
J. G. Azadani ◽  
V. Ongun Özçelik ◽  
R. Grassi ◽  
T. Low

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Xinyi Zheng ◽  
Yadong Wei ◽  
Kaijuan Pang ◽  
Ngeywo Kaner Tolbert ◽  
Dalin Kong ◽  
...  

Abstract By first-principles calculations, we investigate the geometric stability, electronic and optical properties of the type-II PN-WSe2 and type-I PAs-WSe2 van der Waals heterostructures(vdWH). They are p-type semiconductors with indirect band gaps of 1.09 eV and 1.08 eV based on PBE functional respectively. By applying the external gate field, the PAs-WSe2 heterostructure would transform to the type-II band alignment from the type-I. With the increasing of magnitude of the electric field, two heterostructures turn into the n-type semiconductors and eventually into metal. Especially, PN/PAs-WSe2 vdWH are both high refractive index materials at low frequencies and show negative refractive index at high frequencies. Because of the steady absorption in ultraviolet region, the PAs-WSe2 heterostructure is a highly sensitive UV detector material with wide spectrum. The type-II PN-WSe2 heterostructure possesses giant and broadband absorption in the near-infrared and visible regions, and its solar power conversion efficiency of 13.8% is higher than the reported GaTe–InSe (9.1%), MoS2/p-Si (5.23%) and organic solar cells (11.7%). It does project PN-WSe2 heterostructure a potential for application in excitons-based solar cells.


Author(s):  
Pan Wang ◽  
Yixin Zong ◽  
Hao Liu ◽  
Hongyu Wen ◽  
Yueyang Liu ◽  
...  

The band alignment of type-II ZnO/MoSSe vdWH can be tuned to types I and III by strain and the electric field.


2019 ◽  
Vol 21 (15) ◽  
pp. 7765-7772 ◽  
Author(s):  
Yuting Wei ◽  
Fei Wang ◽  
Wenli Zhang ◽  
Xiuwen Zhang

The 0.52/0.83 eV direct bandgap of P/PbI2 possesses a type-II band alignment, can effectively be regulated to 0.90/1.54 eV using an external electric field in DFT/HSE06, and is useful for solar energy and optoelectronic devices.


2018 ◽  
Vol 6 (27) ◽  
pp. 7201-7206 ◽  
Author(s):  
Jimin Shang ◽  
Longfei Pan ◽  
Xiaoting Wang ◽  
Jingbo Li ◽  
Hui-Xiong Deng ◽  
...  

2D InSe/InTe van der Waals heterostructures with a direct band structure and typical type-II band alignment, effectively tuned by applying normal strain, are systematically discussed for future optoelectronic devices.


Crystals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 315 ◽  
Author(s):  
Hao Luo ◽  
Bolun Wang ◽  
Enze Wang ◽  
Xuewen Wang ◽  
Yufei Sun ◽  
...  

Van der Waals heterojunctions based on transition metal dichalcogenides (TMDs) show promising potential in optoelectronic devices, due to the ultrafast separation of photoexcited carriers and efficient generation of the photocurrent. Herein, this study demonstrated a high-responsivity photovoltaic photodetector based on a MoTe2/MoSe2 type-II heterojunction. Due to the interlayer built-in potential, the MoTe2/MoSe2 heterojunction shows obvious photovoltaic behavior and its photoresponse can be tuned by the gate voltage due to the ultrathin thickness of the heterojunction. This self-powered photovoltaic photodetector exhibits an excellent responsivity of 1.5 A W−1, larger than previously reported TMDs-based photovoltaic photodetectors. Due to the high-efficiency separation of electron-hole pairs and ultrafast charge transfer, the light-induced on/off ratio of current switching is larger than 104 at zero bias, and the dark current is extremely low (~10−13 A). These MoTe2/MoSe2 type-II heterojunctions are expected to provide more opportunities for future nanoscale optoelectronic devices.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Gang Xu ◽  
Hao Lei

The electronic structure of GaSe/silicane (GaSe/SiH) van der Waals (vdW) heterostructure in response to a vertical electric field and strain was studied via first-principle calculations. The heterostructure had indirect band gap characteristics in the range [−1.0, −0.4] V/Å and direct band gap features in the range [−0.3, 0.2] V/Å. Furthermore, a type-II to type-I band alignment transition appeared at −0.7 and −0.3 V/Å. Additionally, the GaSe/SiH vdW heterostructure had a type-II band alignment under strain, but an indirect to direct band gap semiconductor transition occurred at −3%. These results indicated that the GaSe/SiH vdW heterostructure may have applications in novel nanoelectronic and optoelectronic devices.


Sign in / Sign up

Export Citation Format

Share Document