Robust oil-core nanocapsules with hyaluronate-based shells as promising nanovehicles for lipophilic compounds

Nanoscale ◽  
2017 ◽  
Vol 9 (47) ◽  
pp. 18867-18880 ◽  
Author(s):  
Joanna Szafraniec ◽  
Agnieszka Błażejczyk ◽  
Edyta Kus ◽  
Małgorzata Janik ◽  
Gabriela Zając ◽  
...  

Biocompatible hyaluronate-based nanocapsules with liquid oil cores exhibiting long-term stability and tunable size were obtained in a versatile surfactant-free process and their biodistribution was studied in vivo and in vitro.

2021 ◽  
Vol 22 (5) ◽  
pp. 2457
Author(s):  
Nikoletta Kósa ◽  
Ádám Zolcsák ◽  
István Voszka ◽  
Gabriella Csík ◽  
Kata Horváti ◽  
...  

Tuberculosis is one of the top ten causes of death worldwide, and due to the appearance of drug-resistant strains, the development of new antituberculotic agents is a pressing challenge. Employing an in silico docking method, two coumaran (2,3-dihydrobenzofuran) derivatives—TB501 and TB515—were determined, with promising in vitro antimycobacterial activity. To enhance their effectiveness and reduce their cytotoxicity, we used liposomal drug carrier systems. Two types of small unilamellar vesicles (SUV) were prepared: multicomponent pH-sensitive stealth liposome (SUVmixed) and monocomponent conventional liposome. The long-term stability of our vesicles was obtained by the examination of particle size distribution with dynamic light scattering. Encapsulation efficiency (EE) of the two drugs was determined from absorption spectra before and after size exclusion chromatography. Cellular uptake and cytotoxicity were determined on human MonoMac-6 cells by flow cytometry. The antitubercular effect was characterized by the enumeration of colony-forming units on Mycobacterium tuberculosis H37Rv infected MonoMac-6 cultures. We found that SUVmixed + TB515 has the best long-term stability. TB515 has much higher EE in both types of SUVs. Cellular uptake for native TB501 is extremely low, but if it is encapsulated in SUVmixed it appreciably increases; in the case of TB515, quasi total uptake is accessible. It is concluded that SUVmixed + TB501 seems to be the most efficacious antitubercular formulation given the presented experiments; to find the most promising antituberculotic formulation for therapy further in vivo investigations are needed.


2021 ◽  
Author(s):  
Moataz Dowaidar

Many substantial hurdles must be solved for in vivo or in vitro clinical translation of the Polydopamine (PDA)-based nanomaterials. Excessive accumulation of residual unreacted DA and specific metabolites (DA or other small molecules) of PDA in vivo may trigger a possible syndrome of dopamine dysregulation characterized by addictive behaviour, as DA may act as an endogenous neurotoxin when its vesicular sequestration is dysregulated. PDA nanoparticles' activity and long-term stability should be fully studied for in vivo applications aside from probable toxicity. According to the findings, PDA's strong reactivity with numerous functional groups (catechol, quinone, and amine) is comparatively favorable, but in mild circumstances it may have negative effects on the organism owing to direct alcohol interactions. More crucially, the charged, moist adhesive PDA has a high affinity for protein attachment, which might be a major defect in the blood contact process. Direct blood contact with these PDA-based nanomaterials with high specific surface area would result in fast protein adsorption, the establishment of a "protein corona" within minutes, and increased thrombus formation risk. In vitro applications, on the other hand, can prevent the threat of detrimental cell or tissue effects. New rules, theories and processes on structure property performance relationships may be developed by researching the in vivo bioapplications of the above-mentioned PDA nanoarchitectures, possibly leading to fundamental and useful insights into in-vitro material translations. Despite the fact that major impediments to structural control persist, it is predicted that in the future, electron coupling will bring new answers to challenges of improved illness diagnosis and therapy.


Neurosurgery ◽  
2011 ◽  
Vol 68 (5) ◽  
pp. 1388-1398 ◽  
Author(s):  
Johanna Oechtering ◽  
Peter J. Kirkpatrick ◽  
Alexander G. K. Ludolph ◽  
Franz J. Hans ◽  
Bernd Sellhaus ◽  
...  

AbstractOBJECTIVE:Endovascular treatment of intracranial aneurysms employing endosaccular coiling can be associated with aneurysm perforation, coil herniation or incomplete obliteration fueling the interest to investigate novel endovascular techniques. We aimed to test a novel embolization material in experimental aneurysms in vitro and in vivo whereby intra-arterially administered magnetic microparticles (MMPs) are navigated into the lumen of vascular aneurysms with assistance from an external magnetic field.METHODS:MMPs are core-shell particles suspended in saline that have a shell made of a polymeric material and a core made of magnetite (Fe3O4). They have a diameter of 1.4 μm. During MMP administration via a microcatheter, a magnetic field was applied externally to direct the particles with the use of a solid-state neodymium magnet. Experiments were performed in a perfused silicone vessel and aneurysm model to evaluate application techniques and fluid dynamics and in the elastase aneurysm model in rabbits to evaluate in vivo compatibility, including multiorgan histological examinations and long-term stability of aneurysm embolization.RESULTS:It was possible to steer and hold the MMPs within the aneurismal cavity where they occluded the lumen progressively. After removal of the external magnetic field, the results remained stable in vivo for the remainder of the observational period (30 minutes); after a 12-week observational period, recanalization of the aneurysm occurred.CONCLUSION:MMPs can be magnetically directed into aneurysms, allowing short-term obliteration. Although the method has yet to show reliable long-term stability, these experiments provide proof of concept, encouraging further investigation of intravascular magnetic compounds.


2018 ◽  
Vol 8 (3) ◽  
pp. 36-41
Author(s):  
Diep Do Thi Hong ◽  
Duong Le Phuoc ◽  
Hoai Nguyen Thi ◽  
Serra Pier Andrea ◽  
Rocchitta Gaia

Background: The first biosensor was constructed more than fifty years ago. It was composed of the biorecognition element and transducer. The first-generation enzyme biosensors play important role in monitoring neurotransmitter and determine small quantities of substances in complex matrices of the samples Glutamate is important biochemicals involved in energetic metabolism and neurotransmission. Therefore, biosensors requires the development a new approach exhibiting high sensibility, good reproducibility and longterm stability. The first-generation enzyme biosensors play important role in monitoring neurotransmitter and determine small quantities of substances in complex matrices of the samples. The aims of this work: To find out which concentration of polyethylenimine (PEI) exhibiting the most high sensibility, good reproducibility and long-term stability. Methods: We designed and developed glutamate biosensor using different concentration of PEI ranging from 0% to 5% at Day 1 and Day 8. Results: After Glutamate biosensors in-vitro characterization, several PEI concentrations, ranging from 0.5% to 1% seem to be the best in terms of VMAX, the KM; while PEI content ranging from 0.5% to 1% resulted stable, PEI 1% displayed an excellent stability. Conclusions: In the result, PEI 1% perfomed high sensibility, good stability and blocking interference. Furthermore, we expect to develop and characterize an implantable biosensor capable of detecting glutamate, glucose in vivo. Key words: Glutamate biosensors, PEi (Polyethylenimine) enhances glutamate oxidase, glutamate oxidase biosensors


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5350
Author(s):  
Niklas Graf ◽  
Nicoleta Ilie

The addition of RAFT (reversible addition-fragmentation chain transfer) agents to the matrix formulation of a bulk-fill resin composite can significantly decrease the required curing time down to a minimum of 3 s. Evaluating the long term-stability of this resin composite in relation to varied curing conditions in an in-vitro environment was this study’s goal. Specimens were produced according to either an ISO or one of two clinical curing protocols and underwent a maximum of three successive aging procedures. After each one of the aging procedures, 30 specimens for each curing condition were extracted for a three-point bending test. Fragments were then stereo-microscopically characterized according to their fracture mechanism. Weibull analysis was used to quantify the reliability of each aging and curing combination. Selected fragments (n = 12) underwent further testing via depth-sensing indentation. Mechanical values for either standardized or clinical curing were mostly comparable. However, changes in fracture mechanism and Weibull modulus were observed after each aging procedure. The final procedure exposed significant differences in the mechanical values due to curing conditions. Curing conditions with increased radiant exposure seemingly result in a higher crosslink in the polymer-matrix, thus increasing resistance to aging. Yet, the clinical curing conditions still resulted in acceptable mechanical values, proving the effectiveness of RAFT-polymerization.


2005 ◽  
Vol 3 (1) ◽  
pp. 15-25 ◽  
Author(s):  
Renata Filkorn-Kaiser ◽  
Konrad Botzenhart ◽  
Albrecht Wiedenmann

A recently described quantitative rapid cycle real time PCR (LightCycler™) assay detects Cryptosporidium parvum after in vitro excystation, which is a surrogate marker for the viability of the organisms. In the original assay the quantification standard is a dilution series of C. parvum oocysts with a microscopically determined excystation rate. The need to keep suspensions of viable oocysts in stock and to continuously monitor their excystation rate, however, renders the assay impracticable for routine application. A synthetic standard was developed to replace the in vivo standard and was calibrated using oocysts with known excystation rates. The standard consists of a 486 bp DNA segment ranging from 229 bp upstream to 79 bp downstream of the actual PCR target site. Aliquots of the standard were frozen and stored at −20 °C and at −70 °C or lyophilised and stored at room temperature in the dark. For a period of one year samples preserved with each of the three methods were restored every four or five weeks. They were amplified in the LightCycler™ and the crossing points (CP) were monitored. No significant trend in the raw CP values could be observed for any of the three storage methods. However, when the methods were compared to each other by calculating the CP ratios (−20 °C/−70 °C; −20 °C/lyophilised; −70 °C/lyophilised) at the 10 monitoring dates, the CP ratios −20 °C/−70 °C and −20 °C/lyophilised showed a highly significant positive trend (p<0.0001) while the CP ratio −70 °C/lyophilised did not differ from the null hypothesis (p=0.53). It can be concluded that the latter two preservation methods are both appropriate, while storage at −20 °C is less advisable. Calculations based on the molecular weight of the standard and on the assumption of an average yield of three sporozoites per oocyst led to the conclusion that the target sequence is probably located on a double copy gene


2010 ◽  
Vol 103 (02) ◽  
pp. 461-465 ◽  
Author(s):  
Martina Böhm-Weigert ◽  
Thomas Wissel ◽  
Heidrun Muth ◽  
Bettina Kemkes-Matthes ◽  
Dirk Peetz

Summary In vitro D-dimer stability in plasma is widely assumed, but has not yet been documented by systematic studies using samples covering a wide range of D-dimer. We investigated the short- and long-term stability of D-dimer in clinical citrated plasma samples with normal and pathological levels. The short-term stability was analysed by measuring D-dimer fresh, after storage of plasma for 4 hours at room temperature (RT) and after an additional 24 h storage at +2 to +8°C (n=40). Long-term stability samples (n=40) were measured fresh and after storage for 19, 25 and 36 months at ≤-60°C. The effect of repeated freezing was analysed by measuring samples (n=50) fresh and after four consecutive freeze-thaw cycles. D-dimer was measured on the BCS System using the INNOVANCE D-Dimer assay (Siemens Healthcare Diagnostics Products GmbH, Marburg, Germany). D-dimer values at baseline ranged from 0.23–22.2 mg/l FEU. The mean percentage change after storage for 4 hours at RT and additional 24 hours at +2 to +8°C was +3.8% and +2.7%, respectively. The mean percentage change after frozen storage for 19, 25 and 36 months at ≤-60°C was –11.7%, –4.8% and –9.3%, respectively. The small decrease of D-dimer values after frozen storage was not time-dependent. Repeated freezing did not significantly alter D-dimer values (mean change ≤5%). The data demonstrate stability of D-dimer in plasma prior to freezing for up to 4 hours at RT and for up to 24 hours at +2 to +8°C as well as in plasma stored for up to three years at ≤-60°C.


2009 ◽  
Vol 1241 ◽  
Author(s):  
Anna Fucikova ◽  
Jan Valenta ◽  
Ivan Pelant ◽  
Vitezslav Brezina

AbstractThe commercially available semiconductor quantum dots have been proven to be slightly to significantly toxic by recent publications depending on the chemical composition. We are developing new non-toxic fluorescent labels based on (i) nanocrystalline silicon, suitable for in vivo studies due to their biodegrability, and on (ii) nanodiamonds, intended mainly for in vitro use due to their long-term stability and nondegradilibity.


2004 ◽  
Vol 83 (5) ◽  
pp. 425-428 ◽  
Author(s):  
U. Gbureck ◽  
J.E. Barralet ◽  
M.P. Hofmann ◽  
R. Thulĺ

Calcium hydroxide cements can lack long-term stability and achieve sustained release by matrix-controlled diffusion of hydroxyl ions. Tetracalcium phosphate (TTCP) hydrolyzes slowly to form calcium hydroxide and a thin insoluble apatite layer that prevents further reaction. In this study, mechanical amorphization was used to create a setting calcium-hydroxide-releasing cement from TTCP. The effect of high-energy ball milling of TTCP on the mechanical properties of the cement was investigated. X-ray diffraction data were used to determine the phase composition of the set cements. An accelerated in vitro test compared pH of water after prolonged boiling of nanocrystalline TTCP cements and a calcium salicylate material. As milling time increased, cement compressive strength and degree of conversion increased. Hydroxyl ion release from the cement was comparable with that from a calcium salicylate material. This new cement system offers the antimicrobial potential of calcium salicylate materials combined with the long-term stability of insoluble apatite cements.


Biosensors ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 289
Author(s):  
Paola Alejandra Fiorani Celedon ◽  
Leonardo Maia Leony ◽  
Ueriton Dias Oliveira ◽  
Natália Erdens Maron Freitas ◽  
Ângelo Antônio Oliveira Silva ◽  
...  

The performance of an immunoassay relies on antigen-antibody interaction; hence, antigen chemical stability and structural integrity are paramount for an efficient assay. We conducted a functional, thermostability and long-term stability analysis of different chimeric antigens (IBMP), in order to assess effects of adverse conditions on four antigens employed in ELISA to diagnose Chagas disease. ELISA-based immunoassays have served as a model for biosensors development, as both assess molecular interactions. To evaluate thermostability, samples were heated and cooled to verify heat-induced denaturation reversibility. In relation to storage stability, the antigens were analyzed at 25 °C at different moments. Long-term stability tests were performed using eight sets of microplates sensitized. Antigens were structurally analyzed through circular dichroism (CD), dynamic light scattering, SDS-PAGE, and functionally evaluated by ELISA. Data suggest that IBMP antigens are stable, over adverse conditions and for over a year. Daily analysis revealed minor changes in the molecular structure. Functionally, IBMP-8.2 and IBMP-8.3 antigens showed reactivity towards anti-T. cruzi antibodies, even after 72 h at 25 °C. Long-term stability tests showed that all antigens were comparable to the control group and all antigens demonstrated stability for one year. Data suggest that the antigens maintained their function and structural characteristics even in adverse conditions, making them a sturdy and reliable candidate to be employed in future in vitro diagnostic tests applicable to different models of POC devices, such as modern biosensors in development.


Sign in / Sign up

Export Citation Format

Share Document