A Facile One-Pot Stepwise Hydrothermal Method for the Synthesis of 3D MoS2/RGO Composites with Improved Lithium Storage Properties

NANO ◽  
2019 ◽  
Vol 14 (03) ◽  
pp. 1950037 ◽  
Author(s):  
Bingning Wang ◽  
Xuehua Liu ◽  
Binghui Xu ◽  
Yanhui Li ◽  
Dan Xiu ◽  
...  

Three-dimensional reduced graphene oxide (RGO) matrix decorated with nanoflowers of layered MoS2 (denoted as 3D MoS2/RGO) have been synthesized via a facile one-pot stepwise hydrothermal method. Graphene oxide (GO) is used as precursor of RGO and a 3D GO network is formed in the first-step of hydrothermal treatment. At the second stage of hydrothermal treatment, nanoflowers of layered MoS2 form and anchor on the surface of previously formed 3D RGO network. In this preparation, thiourea not only induces the formation of the 3D architecture at a relatively low temperature, but also works as sulfur precursor of MoS2. The synthesized composites have been investigated with XRD, SEM, TEM, Raman spectra, TGA, N2 sorption technique and electrochemical measurements. In comparison with normal MoS2/RGO composites, the 3D MoS2/RGO composite shows improved electrochemical performance as anode material for lithium-ion batteries. A high reversible capacity of 930[Formula: see text]mAh[Formula: see text][Formula: see text][Formula: see text]g[Formula: see text] after 130 cycles under a current density of 200[Formula: see text]mA[Formula: see text][Formula: see text][Formula: see text]g[Formula: see text] as well as good rate capability and superior cyclic stability have been observed. The superior electrochemical performance of the 3D MoS2/RGO composite as anode active material for lithium-ion battery is ascribed to its robust 3D structures, enhanced surface area and the synergistic effect between graphene matrix and the MoS2 nanoflowers subunit.

2022 ◽  
Vol 9 ◽  
Author(s):  
Long-Long Ren ◽  
Lin-Hui Wang ◽  
Yu-Feng Qin ◽  
Qiang Li

In order to solve the poor cycle stability and the pulverization of cobalt sulfides electrodes, a series of amorphous and crystalline cobalt sulfides were prepared by one-pot solvothermal synthesis through controlling the reaction temperatures. Compared to the crystalline cobalt sulfide electrodes, the amorphous cobalt sulfide electrodes exhibited superior electrochemical performance. The high initial discharge and charge capacities of 2,132 mAh/g and 1,443 mAh/g at 200 mA/g were obtained. The reversible capacity was 1,245 mAh/g after 200 cycles, which is much higher than the theoretical capacity. The specific capability was 815 mAh/g at 800 mA/g and increased to 1,047 mAh/g when back to 100 mA/g, indicating the excellent rate capability. The outstanding electrochemical performance of the amorphous cobalt sulfide electrodes could result from the unique characteristics of more defects, isotropic nature, and the absence of grain boundaries for amorphous nanostructures, indicating the potential application of amorphous cobalt sulfide as anodes for lithium-ion batteries.


2015 ◽  
Vol 3 (9) ◽  
pp. 5083-5091 ◽  
Author(s):  
Qiang Wang ◽  
Jing Sun ◽  
Qi Wang ◽  
De-an Zhang ◽  
Lili Xing ◽  
...  

α-MoO3–In2O3 core–shell nanorods have been synthesized by a hydrothermal method. As anodes of LIBs, they exhibit excellent lithium storage performance with high reversible capacity, excellent cyclability and good rate capability.


2013 ◽  
Vol 1540 ◽  
Author(s):  
Chia-Yi Lin ◽  
Chien-Te Hsieh ◽  
Ruey-Shin Juang

ABSTRACTAn efficient microwave-assisted polyol (MP) approach is report to prepare SnO2/graphene hybrid as an anode material for lithium ion batteries. The key factor to this MP method is to start with uniform graphene oxide (GO) suspension, in which a large amount of surface oxygenate groups ensures homogeneous distribution of the SnO2 nanoparticles onto the GO sheets under the microwave irradiation. The period for the microwave heating only takes 10 min. The obtained SnO2/graphene hybrid anode possesses a reversible capacity of 967 mAh g-1 at 0.1 C and a high Coulombic efficiency of 80.5% at the first cycle. The cycling performance and the rate capability of the hybrid anode are enhanced in comparison with that of the bare graphene anode. This improvement of electrochemical performance can be attributed to the formation of a 3-dimensional framework. Accordingly, this study provides an economical MP route for the fabrication of SnO2/graphene hybrid as an anode material for high-performance Li-ion batteries.


2021 ◽  
pp. 2150031
Author(s):  
Hai Li ◽  
Chunxiang Lu

As anode material for lithium-ion batteries, graphite has the disadvantage of relatively low specific capacity. In this work, a simple yet effective strategy to overcome the disadvantages by using a composite of flake graphite (FG) and small-sized graphene (SG) has been developed. The FG/SG composite prepared by dispersing FG and SG (90:10 w/w) in ethanol and drying delivers much higher specific capacity than that of individual component except for improved rate capability. More surprisingly, FG/SG composite delivers higher reversible capacity than its theoretical value calculated according to the theoretical capacities of graphite and graphene. Therefore, a synergistic effect between FG and SG in lithium storage is clearly discovered. To explain it, we propose a model that abundant nanoscopic cavities were formed due to physical adhesion between FG and SG and could accommodate extra lithium.


Nanomaterials ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 1084 ◽  
Author(s):  
Quan Sun ◽  
Ying Huang ◽  
Shi Wu ◽  
Zhonghui Gao ◽  
Hang Liu ◽  
...  

Sn/Nitrogen-doped reduced graphene oxide (Sn@N-G) composites have been successfully synthesized via a facile method for lithium-ion batteries. Compared with the Sn or Sn/graphene anodes, the Sn@N-G anode exhibits a superb rate capability of 535 mAh g−1 at 2C and cycling stability up to 300 cycles at 0.5C. The improved lithium-storage performance of Sn@N-G anode could be ascribed to the effective graphene wrapping, which accommodates the large volume change of Sn during the charge–discharge process, while the nitrogen doping increases the electronic conductivity of graphene, as well as provides a large number of active sites as reservoirs for Li+ storage.


Nanoscale ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 4370-4376 ◽  
Author(s):  
Jonghyun Choi ◽  
Won-Sik Kim ◽  
Seong-Hyeon Hong

SnO2–Fe2O3–C triple-shell hollow nano-spheres are fabricated by combining the template-based sol–gel coating technique and hydrothermal method, and their electrochemical performance as an anode for lithium ion batteries (LIBs) is investigated, particularly focusing on their structural stability and long term cyclability.


2015 ◽  
Vol 3 (5) ◽  
pp. 2090-2096 ◽  
Author(s):  
Xun Wen ◽  
Xiaolin Wei ◽  
Liwen Yang ◽  
Pei Kang Shen

A novel composite of reduced graphene oxide (RGO) and FeS2 microparticles self-assembled from small size cubes as a high-performance anode material for lithium-ion batteries (LIBs) has been prepared via a facile one-pot hydrothermal method.


2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
C. Guan ◽  
H. Huang

Olivine-structured LiFePO4faces its intrinsic challenges in terms of poor electrical conductivity and lithium-ion diffusion capability for application to lithium-ion batteries. Cost-effective sol-gel approach is advantageous to in situ synthesize carbon-coated LiFePO4(LiFePO4/C) which can not only improve electronic conductivity but also constrain particle size to nanometer scale. In this study, the key parameter is focused on the choice and amount of chelating agents in this synthesis route. It was found that stability of complexing compounds has significant impacts on the carbon contents and electrochemical properties of the products. At the favorable choice of precursors, composition, and synthesis conditions, nanocrystalline LiFePO4/C materials with appropriate amount of carbon coating were successfully obtained. A reversible capacity of 162 mAh/g was achieved at 0.2Crate, in addition to good discharge rate capability.


NANO ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. 2050149
Author(s):  
Xiangyu Shi ◽  
Jifei Liu ◽  
Jianfeng Dai ◽  
Yufeng Qi

Silicon carbon nanoparticles (SCNPs) coated with reduced graphene oxide (rGO) were fabricated by a hydrothermal method and subsequently by a simple heat treatment process. SCNPs/rGO exhibit excellent electrochemical performance which not only attributes the rGO layer to inhibit the volumetric expansion of silicon and reduce the impedance between the active material and lithium ions during the electrochemical process, but also improves the electrical conductivity of SCNPs/rGO. The as-prepared compound was cyclically tested at a current density of 150[Formula: see text]mA/g, with the first charge and discharge capacities of 3152.2[Formula: see text]mAh/g and 3342.7[Formula: see text]mAh/g, respectively. Moreover, the electrochemical performance of SCNPs/rGO was better than SCNPs. The [Formula: see text] values for fresh battery, after 1 cycle and 100 cycles, are 120.9[Formula: see text][Formula: see text], 120.5[Formula: see text][Formula: see text] and 104[Formula: see text][Formula: see text]. Thus, compared with SCNPs, SCNPs/rGO exhibited lower overall impedance values. These results indicate that the addition of graphene layer significantly improved the electrochemical performance of SCNPs electrodes and reduced the internal resistance of the battery.


2020 ◽  
Vol 12 (4) ◽  
pp. 486-491
Author(s):  
Jinlei Wang ◽  
Na Cao ◽  
Huiling Du ◽  
Xian Du ◽  
Hai Lu ◽  
...  

Metal-organic frameworks (MOFs) have recently emerged as promising electrode materials for lithium-ion batteries (LIBs). However, poor electrical conductivity in most MOFs limits their electrochemical performance. In this work, the integration of flaky cobalt 1,4-benzenedicarboxylate (Co-BDC) MOF with conductive polypyrrole (PPy) nanofibers via in-situ growth strategy was explored for developing novel anode materials for LIBs. Electrochemical studies showed that PPy/Co-BDC composites exhibited enhanced cycling performance (a reversible capacity of ca. 364 mA h g–1 at a current density of 50 mA g–1 after 100 cycles) and rate capability, com- pared with the pristine Co-BDC. The well dispersion of Co-BDC on polypyrrole nanofibers and the decrease in charge-transfer resistance of the composite electrodes accounted for the improvement of electrochemical properties.


Sign in / Sign up

Export Citation Format

Share Document