scholarly journals Molecular fractionation of a soil fulvic acid (FA) and competitive sorption of trace metals (Cu, Zn, Cd, Pb) in hematite–solution systems: effect of the FA-to-mineral ratio

RSC Advances ◽  
2017 ◽  
Vol 7 (68) ◽  
pp. 43090-43103 ◽  
Author(s):  
Guillaume Fleury ◽  
Mirella Del Nero ◽  
Remi Barillon

Understanding of the interactions occurring between fulvic acids (FAs) and trace metals in mineral–solution systems is a major issue for cycles of organic matter and micro-pollutants in surface media.

1967 ◽  
Vol 47 (3) ◽  
pp. 245-250 ◽  
Author(s):  
M. Schnitzer

Twenty organic-soil samples of widely differing degrees of decomposition were extracted with 0.5 N NaOH solution under N2. Amounts of humic and of fulvic acids in the acidified extracts did not correlate significantly with pyrophosphate solubilities. This was thought to be due to interference in the separation scheme by relatively large amounts of ash constituents in the extracts. Since the "classical" fractionation of soil organic matter appears to involve essentially the "salting out" of higher molecular-weight humic from lower molecular-weight fulvic acids, an excessively high salt concentration during the separation should be avoided.To lower the concentration of inorganic constituents in the extracts, the samples were first pretreated with dilute HCl–HF solution and then extracted with 0.1 N NaOH rather than with 0.5 N NaOH. Under these conditions, amounts of fulvic acids in the acidified extracts showed a significant positive correlation (r = 0.52) with pyrophosphate solubilities of untreated extracts, whereas amounts of humic acids in the extracts exhibited a highly negative correlation (r = −0.57) with pyrophosphate solubilities. In the soils examined, increased humification was associated with increases in fulvic-acid but decreases in humic-acid concentrations.From the results of this and of earlier investigations done in this laboratory it appeared that the main mechanism governing humification in these soils was oxidative degradation, resulting ultimately in the formation of fulvic from humic acid.


1971 ◽  
Vol 51 (2) ◽  
pp. 157-164
Author(s):  
G. HUBERT ◽  
A. GONZALEZ

A resin in the H+ form (Dowex 50W-X8) was used to extract fulvic acids from a Spodic horizon. This resin has the following advantages in relation to the reagents normally used. It solubilizes organic matter while purifying it and without altering it by oxidation and hydrolysis. Furthermore, since the resin is eliminated completely from the extract, no contaminating ions remain. The soil was agitated in a mixture of water and resin. The extract obtained was filtered, centrifuged, purified by passage through a column of H+ resin and freeze-dried. The alternation of freeze-drying and resolubilization resulted in the coagulation of the silica which was removed by centrifugation. Acid organic matter with very low ash content (1%) was obtained. The fulvic acids extracted by resin and by Na-pyrophosphate were compared. Qualitatively they were practically the same, as evidenced by the similarity of the curves obtained by gel-filtration (Sephadex). Quantitatively the resin, however, was a more efficient reagent. Therefore, it is recommended for the extraction of fulvic acid and organo-mineral complexes.


2021 ◽  
Vol 11 (18) ◽  
pp. 8466
Author(s):  
Christian Millo ◽  
Carlo Bravo ◽  
Stefano Covelli ◽  
Elena Pavoni ◽  
Elisa Petranich ◽  
...  

The Cananéia-Iguape estuarine–lagoon complex (São Paulo state, Brazil) is a natural laboratory to study metal binding by humic substances (HS) in subtropical settings. This transitional environment is evolving into a freshwater environment due to water input from the Ribeira River, funneled through the Valo Grande Canal (Iguape). Past mining activities in the Ribeira River basin and maritime traffic are suspected to be potential sources of trace metals in the system. In this study, the trace metal contents of Free Humic Acids (FHA), Bound Humic Acids (BHA), and Fulvic Acids (FA) extracted from sedimentary organic matter were investigated. Moreover, the sources of HS were traced using their stable carbon isotope compositions and C/N ratios. The results suggested a mixed marine–terrestrial source of FHA, BHA, and FA. Copper and Cr were the most abundant trace metals bound to HS. On average, Cu showed concentrations of 176, 115, and 37.9 μg g−1 in FHA, BHA, and FA, respectively, whereas Cr showed average concentrations of 47.4, 86.3, and 43.9 μg g−1 in FHA, BHA, and FA, respectively. Marine FHA showed the highest binding capacity for trace metals, whereas terrestrial FA derived from the decay of mangrove organic matter showed the lowest binding capacity.


Soil Research ◽  
2005 ◽  
Vol 43 (2) ◽  
pp. 189 ◽  
Author(s):  
C. N. Guppy ◽  
N. W. Menzies ◽  
P. W. Moody ◽  
F. P. C. Blamey

The incorporation of organic matter (OM) in soils that are able to rapidly sorb applied phosphorus (P) fertiliser reportedly increases P availability to plants. This effect has commonly been ascribed to competition between the decomposition products of OM and P for soil sorption sites resulting in increased soil solution P concentrations. The evidence for competitive inhibition of P sorption by dissolved organic carbon compounds, derived from the breakdown of OM, includes studies on the competition between P and (i) low molecular weight organic acids (LOAs), (ii) humic and fulvic acids, and (iii) OM leachates in soils with a high P sorption capacity. These studies, however, have often used LOAs at 1–100 mm, concentrations much higher than those in soils (generally <0.05 mm). The transience of LOAs in biologically active soils further suggests that neither their concentration nor their persistence would have a practical benefit in increasing P phytoavailability. Higher molecular weight compounds such as humic and fulvic acids also competitively inhibit P sorption; however, little consideration has been given to the potential of these compounds to increase the amount of P sorbed through metal–chelate linkages. We suggest that the magnitude of the inhibition of P sorption by the decomposition products of OM leachate is negligible at rates equivalent to those of OM applied in the field. Incubation of OM in soil has also commonly been reported as reducing P sorption in soil. However, we consider that the reported decreases in P sorption (as measured by P in the soil solution) are not related to competition from the decomposition products of OM breakdown, but are the result of P release from the OM that was not accounted for when calculating the reduction in P sorption.


1967 ◽  
Vol 47 (2) ◽  
pp. 111-116 ◽  
Author(s):  
F. J. Sowden ◽  
M. Schnitzer

Organic matter (O.M.) was extracted with 0.5 N NaOH under N2, from samples of the Bh horizon of a Podzol soil. The NaOH-soluble O.M. from one sample was partitioned into "classical" humic and fulvic acids. The O.M. extracted from other samples was passed over an H-resin and purified fulvic acid" was prepared from the eluate. The O.M. retained on the resin was eluted with base. After hydrolysis a sample of the original soil the NaOH-insoluble residue and the various O.M. preparations were analyzed for amino acids, amino sugars and ammonia.Eighty percent of the amino acids in the original soil were accounted for in the NaOH-insoluble residue plus the purified fulvic acid and the NH4OH eluate. Most of the soil amino acids were recovered in the NaOH-insoluble residue plus classical humic plus classical fulvic acid fractions. Qualitatively, the amino acid distribution in all fractions was similar to the distribution or amino acids in an "average" protein. Amounts of amino sugars were small consisting of two-thirds glucosamine and one-third galactosamine. Recoveries of amino sugars were low, possibly due to the effect of alkali.Slightly more than 50% of the soil-N was accounted for as amino acids plus NH3 plus amino sugars. The behavior of the fraction on the exchange resin suggested that the organic C- organic N-system extracted from the soil was not uniform, and that at least portions of the ammo acids and amino sugars were either adsorbed on or physically mixed with organic matter.


1996 ◽  
Vol 34 (9) ◽  
pp. 157-164 ◽  
Author(s):  
Kim C.-H. ◽  
M. Hosomi ◽  
A. Murakami ◽  
M. Okada

Effects of clay on fouling due to organic substances and clay were evaluated by model fouling materials and kaolin. Model fouling materials selected were protein, polysaccharide, fulvic acid, humic acid and algogenic matter (EOM:ectracellular organic matter, microbial decomposition products) and kaolin was selected as the clay material. Polysulfone membrane (MWCO(Molecular Weight Cut-Off) 10,000, 50,000 and 200,000) was used as an ultrafiltration membrane. In particular, the flux measurement of solutions containing algogenic matter used an ultrafiltration membrane of MWCO 50,000. The flux of protein and polysaccharide with coexistence of kaolin increased in the case of the ratio of MW/MWCO being greater than one, but did not increase in the case of the MW/MWCO ratio being below one. In contrast, the flux of fulvic acid and humic acid with coextence of kaolin decreased regardless of the ratio of MW/MWCO. The addition of dispersion agent and coagulant in the organic substances and kaolin mixture solution changed the size distribution of kaolin, and resulted in a change of the flux. EOM and microbial decomposition products decreased with the increase of the fraction of organic matter having molecular weight more than MWCO of membrane. The flux of the algogenic organic matter with coexistence of kaolin decreased with the increase of the amount of kaolin. It was suggested that the decline of the flux with coexistence of kaolin was due to the change of the resistance of the kaolin cake layer corresponding to the change in kaolin size distribution with charge.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1067
Author(s):  
Aleksandra Ukalska-Jaruga ◽  
Romualda Bejger ◽  
Guillaume Debaene ◽  
Bożena Smreczak

The objective of this paper was to investigate the molecular characterization of soil organic matter fractions (humic substances (HS): fulvic acids-FAs, humic acids-HAs, and humins-HNs), which are the most reactive soil components. A wide spectrum of spectroscopic (UV–VIS and VIS–nearIR), as well as electrochemical (zeta potential, particle size diameter, and polydispersity index), methods were applied to find the relevant differences in the behavior, formation, composition, and sorption properties of HS fractions derived from various soils. Soil material (n = 30) used for the study were sampled from the surface layer (0–30 cm) of agricultural soils. FAs and HAs were isolated by sequential extraction in alkaline and acidic solutions, according to the International Humic Substances Society method, while HNs was determined in the soil residue (after FAs and HAs extraction) by mineral fraction digestion using a 0.1M HCL/0.3M HF mixture and DMSO. Our study showed that significant differences in the molecular structures of FAs, Has, and HNs occurred. Optical analysis confirmed the lower molecular weight of FAs with high amount of lignin-like compounds and the higher weighted aliphatic–aromatic structure of HAs. The HNs were characterized by a very pronounced and strong condensed structure associated with the highest molecular weight. HAs and HNs molecules exhibited an abundance of acidic, phenolic, and amine functional groups at the aromatic ring and aliphatic chains, while FAs mainly showed the presence of methyl, methylene, ethenyl, and carboxyl reactive groups. HS was characterized by high polydispersity related with their structure. FAs were characterized by ellipsoidal shape as being associated to the long aliphatic chains, while HAs and HNs revealed a smaller particle diameter and a more spherical shape caused by the higher intermolecular forcing between the particles. The observed trends directly indicate that individual HS fractions differ in behavior, formation, composition, and sorption properties, which reflects their binding potential to other molecules depending on soil properties resulting from their type. The determined properties of individual HS fractions are presented as averaged characteristics over the examined soils with different physico-chemical properties.


1969 ◽  
Vol 49 (1) ◽  
pp. 151-158 ◽  
Author(s):  
M. Schnitzer ◽  
J. G. Desjardins

A leachate, collected in the field in a lysimeter placed between the Ae and Bhf horizon of a Humic Podzol in Newfoundland, was analyzed by chemical and spectroscopic methods.About 87% of the dry, ash-free weight of the leachate was fulvic acid, the remainder consisting mainly of polysaccharides and nitrogenous compounds. A comparison of the analytical characteristics of the purified leachate with those of extracted and purified Podzol Bh fulvic acid showed that the main structural features of the two materials were very similar. Judging from its high contents of oxygen-containing functional groups and from its water solubility, the organic matter in the leachate had all the characteristics of an efficient metal–complexing agent, capable of playing a significant role in metal–organic matter interactions in soils.An organic matter–silica sediment was isolated from the leachate, consisting of 47.6% organic matter and of 52.4% of almost pure SiO2∙nH2O. The organic matter in the sediment accounted for about 10% of the organic matter in the leachate. The isolation of the sediment suggests that investigations on interactions between compounds of silicon and humic substances deserve greater attention than they have so far received.


2009 ◽  
Vol 66 (3) ◽  
pp. 353-360 ◽  
Author(s):  
Jolimar Antonio Schiavo ◽  
Jader Galba Busato ◽  
Marco Antonio Martins ◽  
Luciano Pasqualoto Canellas

Humidified fractions of organic matter and soil microorganism populations are used as environmental quality indicators. This work aimed to study the changes in chemical and microbiological soil attributes, as well as in the humidified fractions, of the organic matter in a substrate from a clay extraction area cropped with Brachiaria mutica, Acacia mangium and Eucalyptus. In the Eucalyptus area, the P contents increased linearly with planting time. However, only at the twelfth year, differences between Eucalyptus and B. mutica areas have occurred. In the A. mangium area, such differences in the P content occurred at the third year with increment of 43%, at the 0-10 cm layer, in relation to B. mutica. Also, at the 0-10 cm layer, the total carbon contents were 98%, 78%, 70% and 40% higher than those found in Eucalyptus with three, five, twelve years of age and in the B. mutica area, respectively. Such increments also occurred in the humidified fractions, especially in the fulvic acids (C FA). The population of microorganisms was higher in the A. mangium area, mainly in the summer, where it was observed a positively correlation with total carbon (total bacteria, r = 0.96**, total fungi, r = 0.91*, and phosphate solubilizer microorganisms, r = 0.98**) and with the C FA fraction (total bacteria r = 0.96**, total fungi, r = 0.90*, and phosphate solubilizer microorganisms, r = 0.98**). The use of A. mangium led to improvements in the chemical and microbiological soil attributes in the substrate


Sign in / Sign up

Export Citation Format

Share Document