scholarly journals Solid-contact Ca2+-selective electrodes based on two-dimensional black phosphorus as ion-to-electron transducers

RSC Advances ◽  
2017 ◽  
Vol 7 (69) ◽  
pp. 43905-43908 ◽  
Author(s):  
Lijuan Kou ◽  
Minglang Fu ◽  
Rongning Liang

A solid-contact Ca2+-selective electrode with two-dimensional black phosphorus as the solid contact was developed for the first time.

Author(s):  
Mengke Wang ◽  
Jun Zhu ◽  
You Zi ◽  
Zheng-Guang Wu ◽  
Haiguo Hu ◽  
...  

In recent years, two-dimensional (2D) black phosphorus (BP) has been widely applied in many fields, such as (opto)electronics, transistors, catalysis and biomedical applications due to its large surface area, tunable...


Fluids ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 27
Author(s):  
J. Barry Greenberg ◽  
David Katoshevski

A theoretical investigation of the influence of a standing wave flow-field on the dynamics of a laminar two-dimensional spray diffusion flame is presented for the first time. The mathematical analysis permits mild slip between the droplets and their host surroundings. For the liquid phase, the use of a small Stokes number as the perturbation parameater enables a solution of the governing equations to be developed. Influence of the standing wave flow-field on droplet grouping is described by a specially constructed modification of the vaporization Damkohler number. Instantaneous flame front shapes are found via a solution for the usual Schwab–Zeldovitch parameter. Numerical results obtained from the analytical solution uncover the strong bearing that droplet grouping, induced by the standing wave flow-field, can have on flame height, shape, and type (over- or under-ventilated) and on the existence of multiple flame fronts.


2021 ◽  
Author(s):  
XINGYUN Li ◽  
Bin Han ◽  
Yaojie Xu ◽  
Xiao Liu ◽  
Chunhui Zhao ◽  
...  

As an advanced two-dimensional (2D) material with unique properties, black phosphorus (BP) has attracted great attention in a variety of fields. One of the main obstacles for practical application of...


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Azam Marjani ◽  
Mehdi Ghambarian ◽  
Mohammad Ghashghaee

AbstractBlack phosphorus nanostructures have recently sparked substantial research interest for the rational development of novel chemosensors and nanodevices. For the first time, the influence of alkali metal doping of black phosphorus monolayer (BP) on its capabilities for nitrogen dioxide (NO2) capture and monitoring is discussed. Four different nanostructures including BP, Li-BP, Na-BP, and K-BP were evaluated; it was found that the adsorption configuration on Li-BP was different from others such that the NO2 molecule preferred a vertical stabilization rather than a parallel configuration with respect to the surface. The efficiency for the detection increased in the sequence of Na-BP < BP < K-BP < Li-BP, with the most significant improvement of + 95.2% in the case of Li doping. The Na-BP demonstrated the most compelling capacity (54 times higher than BP) for NO2 capture and catalysis (− 24.36 kcal/mol at HSE06/TZVP). Furthermore, the K-doped device was appropriate for both nitrogen dioxide adsorption and sensing while also providing the highest work function sensitivity (55.4%), which was much higher than that of BP (10.4%).


2021 ◽  
Author(s):  
Ferdinand Lédée ◽  
Pierre Audebert ◽  
Gaëlle Trippé-Allard ◽  
Laurent Galmiche ◽  
Damien Garrot ◽  
...  

We present the synthesis of two novel two-dimensional (2D) hybrid organic-inorganic halide perovskites incorporating for the first time 100% of a photoactive tetrazine derivative as the organic component. With this...


2020 ◽  
Vol 11 ◽  
pp. 662-670
Author(s):  
Matangi Sricharan ◽  
Bikesh Gupta ◽  
Sreejesh Moolayadukkam ◽  
H S S Ramakrishna Matte

MoO3 is a versatile two-dimensional transition metal oxide having applications in areas such as energy storage devices, electronic devices and catalysis. To efficiently utilize the properties of MoO3 arising from its two-dimensional nature exfoliation is necessary. In this work, the exfoliation of MoO3 is carried out in 2-butanone for the first time. The achieved concentration of the dispersion is about 0.57 mg·mL−1 with a yield of 5.7%, which are the highest values reported to date. These high values of concentration and yield can be attributed to a favorable matching of energies involved in exfoliation and stabilization of MoO3 nanosheets in 2-butanone. Interestingly, the MoO3 dispersion in 2-butanone retains its intrinsic nature even after exposure to sunlight for 24 h. The composites of MoO3 nanosheets were used as an electrode material for supercapacitors and showed a high specific capacitance of 201 F·g−1 in a three-electrode configuration at a scan rate of 50 mV·s−1.


2009 ◽  
Vol 21 (17-18) ◽  
pp. 1970-1976 ◽  
Author(s):  
Gergely Gyetvai ◽  
Lívia Nagy ◽  
Ari Ivaska ◽  
István Hernadi ◽  
Géza Nagy

2021 ◽  
Vol 412 ◽  
pp. 128744
Author(s):  
Yaopeng Wu ◽  
Wei Yuan ◽  
Ming Xu ◽  
Shigen Bai ◽  
Yu Chen ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Yong Kang ◽  
Zhengjun Li ◽  
Fengying Lu ◽  
Zhiguo Su ◽  
Xiaoyuan Ji ◽  
...  

Two dimensional black phosphorus nanosheets (BP NS) have attracted plenty of attentions in the research field of cancer photonic therapy. However, the poor stability and relatively low efficiency in reactive...


Sign in / Sign up

Export Citation Format

Share Document