scholarly journals Coordinating influence of multilayer graphene and spherical SnAgCu for improving tribological properties of a 20CrMnTi material

RSC Advances ◽  
2018 ◽  
Vol 8 (25) ◽  
pp. 14129-14137 ◽  
Author(s):  
Xiaoxue Li ◽  
Jingli Xu

In order to increase the service life and operational reliability of a 20CrMnTi-steel-based gearing system, the friction and wear behavior of 20CrMnTi needs to be further improved.

2017 ◽  
Vol 69 (2) ◽  
pp. 199-207 ◽  
Author(s):  
Jun Liu ◽  
Zhinan Zhang ◽  
Zhe Ji ◽  
Youbai Xie

Purpose This paper aims to investigate the effects of reciprocating frequency, large normal load on friction and wear behavior of hydrogenated diamond-like carbon (H-DLC) coating against Ti-6Al-4V ball under dry and lubricated conditions. Design/methodology/approach The friction and wear mechanisms are analyzed by scanning electron microscope, energy dispersive spectroscopy and Raman spectroscopy. Findings The results show that as reciprocating frequency increases under lubricated conditions, the friction coefficient decreases first and then increases. When the reciprocating frequency is 2.54 Hz, the value of friction coefficient reaches the minimum. The friction reduction is because of the transformation from sp3 to sp2, the formation of transfer layer on Ti-6Al-4V ball and the reduction in viscous friction, whereas the increase of friction coefficient is related to wear. In dry conditions, the friction coefficient is between 0.06 and 0.1. And, the service life of H-DLC coating decreases with the increase in reciprocating frequency and normal load. Research limitations/implications It is confirmed that adding the lubricant could prolong the service life of H-DLC coating and reduce friction and wear efficiently. And, the wear mechanisms under dry and lubricated conditions encompass abrasive wear and adhesive wear. Originality/value The results are helpful for application of diamond-like carbon coating.


1975 ◽  
Vol 97 (3) ◽  
pp. 506-509 ◽  
Author(s):  
H. E. Sliney ◽  
J. W. Graham

This paper summarizes the friction and wear behavior of some fluoride-metal, self-lubricating composites. Fluoride-infiltrated sintered nickel alloy composites and plasma-sprayed, co-deposited fluoride-nickel alloy composites are described. The importance of proper surface-conditioning of the composites is stressed. Performance of fluoride-metal composites in some machine application evaluations is discussed.


2011 ◽  
Vol 130-134 ◽  
pp. 2754-2757
Author(s):  
Hao Wu ◽  
Yan Qiu Xia ◽  
Xin Feng ◽  
Xiang Yu Ge

The friction and wear properties of the DLC coatings were evaluated while being lubricated with pure PAG, PAG containing PN and ZDDP using reciprocating ball-on-disk sliding UMT tester, respectively. The morphologies of the worn surfaces of the DLC coatings were observed using a scanning electron microscope (SEM). The results indicated that the DLC coatings exhibited better tribological properties under the lubrication of PAG containing PN or ZDDP than that of pure PAG. In addition, PN and ZDDP as additives show different tribological properties. The former offers better anti-wear ability, the latter offers better friction-reducing properties.


2005 ◽  
Vol 297-300 ◽  
pp. 1401-1405 ◽  
Author(s):  
Bin Xu ◽  
Shu Hua Wang ◽  
Yu Peng Lu ◽  
Jianjun Cui ◽  
Mu Sen Li

Application of powder boronizing to mechanical industry has been restricted because of the brittleness of boronized layer, which inevitably leads to decrease of service life of boronized parts. Therefore, attention should be paid to reducing the brittleness of boronized layer without decreasing its high hardness. In the present paper, a study on the effect of micro-addition rare earth and chrome on friction and wear behavior of boronized layer was carried out using an MM-200 wear test machine. Compared with that of pure single Fe2B phase, the brittleness of the boronized layer containing minim rare earth and chrome elements, obtained by powder RE-chrome-boronizing, is reduced, which results in increasing the bearing capacity and wear resistance of the boronized layer. The friction and wear mechanism is also briefly analyzed.


Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 773 ◽  
Author(s):  
Auezhan Amanov ◽  
Jan Sembiring ◽  
Tileubay Amanov

This study deals with the friction and wear behavior of the vertical spindle and V-belt to improve the reliability, operation and to extend the service life of a cotton picker. The vertical spindle made of low-carbon steel (ST3) was treated by the ultrasonic nanocrystal surface modification (UNSM) technique to control the friction and wear behavior. It was found that the UNSM technique reduced surface roughness and increased surface hardness of the vertical spindle. The friction and wear behavior of the vertical spindle and V-belt was assessed by carrying out tribological tests and the results showed that the UNSM-treated vertical spindle generated a higher friction coefficient compared to the untreated one due to having less slip. In case of wear resistance, unmeasurable wear occurred on the surface of the vertical spindle due to its significant high hardness compared to the hardness of the V-belt that came into contact with the vertical spindle in relative motion. Hence, the wear behavior and mechanisms of the V-belts were systematically investigated and also discussed based on the wear track profiles and micrographs. It can be concluded that the application of the UNSM technique to the vertical spindle may contribute to improve the performance of cotton pickers by reducing the slip and prolonging the service life.


2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Jin Wei ◽  
Gongjun Cui

The tribological properties of Fe–Cr–B alloys were studied sliding against SiC ball in liquid paraffin oil. The boron played an important role in improving tribological properties of alloys. The friction coefficients of alloys decreased with the increase of normal load and sliding speed. The Fe–Cr–B alloys showed better wear resistance than that of Fe–Cr alloy. Fe-21 wt.% Cr-7 wt.% B alloy had the best tribological properties. The wear mechanism of Fe–Cr alloy was abrasive wear and plastic deformation. The wear mechanism of Fe–Cr–B alloys was microploughing and fatigue flaking pits.


2011 ◽  
Vol 121-126 ◽  
pp. 3589-3593
Author(s):  
Ming Qiu ◽  
Guo Feng Wang ◽  
Yao Xing Bai ◽  
Long Chen ◽  
Ying Chun Li

Experiments were carried out to investigate the tribological properties of spherical plain bearings with copper grid composite liners filled PTFE under two contact pressures(40MPa,60MPa), four oscillating frequencies (1.2Hz, 1.8Hz, 2.4Hz, 3.0Hz) and two swinging conditions. With the help of SEM, EDS and Three-dimensional morphology profiler, the wear mechanism was analyzed. The results indicate the coefficients and wear depths under tilt swinging condition are higher than those of swivel swinging. While the friction temperature show the contrary trend. The research discovers that the friction temperature has a great influence on tribological properties of spherical plain bearings. The analysis demonstrates that the main wear mechanisms are the adhesive and abrasive wear under the two swinging conditions and extrusive wear exist also.


2021 ◽  
Vol 6 (6) ◽  
pp. 1288-1296
Author(s):  
Hongming Wie ◽  
Jianpeng Zou ◽  
Xiaoya Li ◽  
Cong Xiao

Sign in / Sign up

Export Citation Format

Share Document