NiCo2O4@rGO hybrid nanostructures on Ni foam as high-performance supercapacitor electrodes

2017 ◽  
Vol 5 (12) ◽  
pp. 5912-5919 ◽  
Author(s):  
Cheng Zhang ◽  
Xinpei Geng ◽  
Shaolong Tang ◽  
Mingsen Deng ◽  
Youwei Du

Pseudocapacitors store energy on/near the surface of electrode materials through redox reactions, whose capacitive activity thus depends on the electronic states of the surface and interface, and electronic conductivity of electrode materials.

2021 ◽  
Author(s):  
yajun JI ◽  
Fei Chen ◽  
Shufen Tan ◽  
Fuyong Ren

Abstract Transition metal oxides are generally designed as hybrid nanostructures with high performance for supercapacitors by enjoying the advantages of various electroactive materials. In this paper, a convenient and efficient route had been proposed to prepare hierarchical coral-like MnCo2O4.5@Co-Ni LDH composites on Ni foam, in which MnCo2O4.5 nanowires were enlaced with ultrathin Co-Ni layered double hydroxides nanosheets to achieve high capacity electrodes for supercapacitors. Due to the synergistic effect of shell Co-Ni LDH and core MnCo2O4.5, the outstanding electrochemical performance in three-electrode configuration was triggered (high area capacitance of 5.08 F/cm2 at 3 mA/cm2 and excellent rate capability of maintaining 61.69 % at 20 mA/cm2), which is superior to those of MnCo2O4.5, Co-Ni LDH and other metal oxides based composites reported. Meanwhile, the as-prepared hierarchical MnCo2O4.5@Co-Ni LDH electrode delivered improved electrical conductivity than that of pristine MnCo2O4.5. Furthermore, the as-constructed asymmetric supercapacitor using MnCo2O4.5@Co-Ni LDH as positive and activated carbon as negative electrode presented a rather high energy density of 220 μWh/cm2 at 2400 μW/cm2 and extraordinary cycling durability with the 100.0 % capacitance retention over 8000 cycles at 20 mA/cm2, demonstrating the best electrochemical performance compared to other asymmetric supercapacitors using metal oxides based composites as positive electrode material. It can be expected that the obtained MnCo2O4.5@Co-Ni LDH could be used as the high performance and cost-effective electrode in supercapacitors.


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1952 ◽  
Author(s):  
Santanu Mukherjee ◽  
Shakir Bin Mujib ◽  
Davi Soares ◽  
Gurpreet Singh

Sodium ion batteries (SIBs) are being billed as an economical and environmental alternative to lithium ion batteries (LIBs), especially for medium and large-scale stationery and grid storage. However, SIBs suffer from lower capacities, energy density and cycle life performance. Therefore, in order to be more efficient and feasible, novel high-performance electrodes for SIBs need to be developed and researched. This review aims to provide an exhaustive discussion about the state-of-the-art in novel high-performance anodes and cathodes being currently analyzed, and the variety of advantages they demonstrate in various critically important parameters, such as electronic conductivity, structural stability, cycle life, and reversibility.


NANO ◽  
2020 ◽  
pp. 2150005
Author(s):  
Meng Sun ◽  
Zhipeng Cui ◽  
Huanqing Liu ◽  
Sijie Li ◽  
Qingye Zhang ◽  
...  

FeOOH nanorods (NRs) wrapped by reduced graphene oxide (rGO) were fabricated using a facile solvothermal method. When used as anode materials for lithium-ion batteries (LIBs), the FeOOH NRs/rGO composites show a higher capacity (490[Formula: see text]mAh g[Formula: see text] after 100 cycles at a current density of 100[Formula: see text]mA g[Formula: see text] and better rate capability than pure FeOOH NRs. The enhanced electrochemical performance can be ascribed to the hybrid structure of FeOOH and rGO. On one hand, the introduction of rGO can improve electronic conductivity and reduce charge-transfer resistance for electrode materials. On the other hand, the distinctive structure (FeOOH NRs surrounded by flexible rGO) can effectively buffer large volume change during the Li[Formula: see text] insertion/extraction process. Our work provides a feasible strategy to obtain high-performance LIBs.


RSC Advances ◽  
2016 ◽  
Vol 6 (87) ◽  
pp. 84236-84241 ◽  
Author(s):  
Yirong Zhu ◽  
Xiaobo Ji ◽  
Han Chen ◽  
Liujiang Xi ◽  
Wenqiang Gong ◽  
...  

Ternary metal sulfides have been regarded as a promising class of electrode materials for high-performance supercapacitors since they can offer higher electronic conductivity and higher electrochemical activity than single-component metal sulfides.


2021 ◽  
Author(s):  
Dillip Kumar Mohapatra ◽  
Swetapadma Praharaj ◽  
Dibyaranjan Rout

Abstract Constructing a novel nanocomposite structure based on Co3O4 is of the current interest to design and develop efficient electrochemical capacitors. The capacitive performance of MoO3@Co3O4 nanocomposite is compared with pristine Co3O4 nanoparticles, both of them being synthesized by hydrothermal technique. A BET surface area of ~41 m2g-1 (almost twice that of Co3O4 )and average pore size of 3.6 nm is found to be suitable for promoting Faradaic reactions in the nanocomposite. Electrochemical measurements conducted on both samples predict capacitive behavior with quasi-reversible redox reactions. MoO3@Co3O4 nanocomposite is capable of delivering a superior specific capacitance of 1248 Fg-1 at 0.5 Ag-1 along with notable stability of 92% even after 2000 cycles of charge-discharge and Coulombic efficiency approaching 100% at 10 Ag-1. The outstanding results obtained in this work assure functional adequacy of MoO3@Co3O4 nanocomposite in fabricating high-performance electrochemical capacitors.


2015 ◽  
Vol 3 (5) ◽  
pp. 1953-1960 ◽  
Author(s):  
Lingjie Li ◽  
Jing Xu ◽  
Jinglei Lei ◽  
Jie Zhang ◽  
Frank McLarnon ◽  
...  

The Ni(OH)2 hexagonal platelets were in situ fabricated on Ni foam as a binder-free supercapacitor electrode material with high performance and excellent cycling stability by a one-step, cost-effective, green hydrothermal treatment of three-dimensional (3D) Ni foam in a 15 wt% H2O2 aqueous solution.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Su Hyun Yang ◽  
Yun Jae Lee ◽  
Heemin Kang ◽  
Seung-Keun Park ◽  
Yun Chan Kang

AbstractTwo-dimensional (2D) MXenes are promising as electrode materials for energy storage, owing to their high electronic conductivity and low diffusion barrier. Unfortunately, similar to most 2D materials, MXene nanosheets easily restack during the electrode preparation, which degrades the electrochemical performance of MXene-based materials. A novel synthetic strategy is proposed for converting MXene into restacking-inhibited three-dimensional (3D) balls coated with iron selenides and carbon. This strategy involves the preparation of Fe2O3@carbon/MXene microspheres via a facile ultrasonic spray pyrolysis and subsequent selenization process. Such 3D structuring effectively prevents interlayer restacking, increases the surface area, and accelerates ion transport, while maintaining the attractive properties of MXene. Furthermore, combining iron selenides and carbon with 3D MXene balls offers many more sites for ion storage and enhances the structural robustness of the composite balls. The resultant 3D structured microspheres exhibit a high reversible capacity of 410 mAh g−1 after 200 cycles at 0.1 A g−1 in potassium-ion batteries, corresponding to the capacity retention of 97% as calculated based on 100 cycles. Even at a high current density of 5.0 A g−1, the composite exhibits a discharge capacity of 169 mAh g−1.


2021 ◽  
Author(s):  
Shuling Liu ◽  
Rui Wang ◽  
Qiuting Wang ◽  
Qianhong Tian ◽  
Xian Cui

Transition-metal selenides is regarded as promising electrode materials due to their superior electrochemical performances for supercapacitors. In this study, nanorod-like hybrid of Ni0.85Se@Cu2-xSe on Ni-foam substrate is successfully synthesized via...


2021 ◽  
Author(s):  
Qichao Song ◽  
Chunguang Yang

Abstract Todays, metal-organic frameworks (MOFs) and their derived structures have been extensively investigated as the novel electrode materials in energy storage area due to their stable porous architectures and exceptionally large specific surface area. In this study, bimetallic Ni,Zn-MOF is synthesized onto Ni foam via a novel indirect cathodic electrodeposition method for the first time. After that, the fabricated Ni,Zn-MOFs onto Ni foam was converted to corresponding bi-metal hydroxide@C/Ni foam through direct chemical treating with 6M KOH solution. The obtained Ni,Zn-MOFs/NF and Ni2 − xZnx (OH)2@C/NF electrodes are characterized through XRD, FT-IR, FE-SEM and EDS analyses. These analyses results confirmed deposition of well-defined crystalline porous sheet-like structures of Ni3 − xZnx(BTC)2 deposited onto Ni foam, where the hydroxide@C electrode was also exhibited similar morphology. As the binder-free electrode, the as-prepared Ni,Zn-MOF@Ni foam exhibited the superior storage capacities of 356.1 mAh g− 1 and 255.5 mAh g− 1 as well as good cycling stabilities of 94.2 % and 84.5 % after 6000 consecutive charge/discharge cycles at the current densities of 5 and 15 A g− 1, respectively. On the other hand, Ni,Zn-MOF derived hydroide@C/Ni foam presented the superior capacities of 545 mAh g− 1 and 406 mAh g− 1 as well as proper cycle lifes of 91.8 % and 78.3 % after 6000 cycling at the applied loads of 5 and 15 A g− 1, respectively. Based on these findings, both of these fabricated battery-type electrodes are introduced as the promising candidates for use in energy storage devices.


2021 ◽  
Vol 8 (1) ◽  
pp. 72-78
Author(s):  
Fuyong Ren ◽  
Yajun Ji ◽  
Shufen Tan ◽  
Fei Chen

Herein, binder-free sponge-like NiCo2S4 nanosheets supported on Ni foam with ultra-high mass loading were synthesized via a facile one-step hydrothermal route.


Sign in / Sign up

Export Citation Format

Share Document