High strength and self-healable gelatin/polyacrylamide double network hydrogels

2017 ◽  
Vol 5 (37) ◽  
pp. 7683-7691 ◽  
Author(s):  
Xiaoqiang Yan ◽  
Qiang Chen ◽  
Lin Zhu ◽  
Hong Chen ◽  
Dandan Wei ◽  
...  

Gelatin/polycrylamide double-network (DN) hydrogels composed of two different polymer networks with strong asymmetry are excellent structural platforms to integrate different mechanical properties into a single material.

Soft Matter ◽  
2021 ◽  
Author(s):  
Xuefeng Li ◽  
Yonglin Wang ◽  
Dapeng Li ◽  
Mengmeng Shu ◽  
Lingli Shang ◽  
...  

The mechanical properties of thermosensitive hydrogels are significantly enhanced by DN structures. Antibacterial drugs can be readily loaded in the hydrogels, which in response to external temperature change, release and deliver treatment on-site.


2021 ◽  
Author(s):  
Zi Wang ◽  
Xu Jun Zheng ◽  
Tetsu Ouchi ◽  
Tatiana Kouznetsova ◽  
Haley Beech ◽  
...  

<p>The utility and lifetime of materials made from polymer networks, including hydrogels, depend on their capacity to stretch and resist tearing. In gels and elastomers, those mechanical properties are often limited by the covalent chemical structure of the polymer strands between cross-links, which is typically fixed during the material synthesis. Here, we report polymer networks in which the constituent strands lengthen through force-coupled reactions that are triggered as the strands reach their nominal breaking point. Reactive strand extensions of up to 40% lead to hydrogels that stretch 40-50% further than, and exhibit tear energies twice that of, networks made from analogous control strands. The enhancements are synergistic with those provided by double network architectures, and complement other existing toughening strategies. </p>


2021 ◽  
Author(s):  
Zi Wang ◽  
Xu Jun Zheng ◽  
Tetsu Ouchi ◽  
Tatiana Kouznetsova ◽  
Haley Beech ◽  
...  

<p>The utility and lifetime of materials made from polymer networks, including hydrogels, depend on their capacity to stretch and resist tearing. In gels and elastomers, those mechanical properties are often limited by the covalent chemical structure of the polymer strands between cross-links, which is typically fixed during the material synthesis. Here, we report polymer networks in which the constituent strands lengthen through force-coupled reactions that are triggered as the strands reach their nominal breaking point. Reactive strand extensions of up to 40% lead to hydrogels that stretch 40-50% further than, and exhibit tear energies twice that of, networks made from analogous control strands. The enhancements are synergistic with those provided by double network architectures, and complement other existing toughening strategies. </p>


Author(s):  
L.J. Chen ◽  
H.C. Cheng ◽  
J.R. Gong ◽  
J.G. Yang

For fuel savings as well as energy and resource requirement, high strength low alloy steels (HSLA) are of particular interest to automobile industry because of the potential weight reduction which can be achieved by using thinner section of these steels to carry the same load and thus to improve the fuel mileage. Dual phase treatment has been utilized to obtain superior strength and ductility combinations compared to the HSLA of identical composition. Recently, cooling rate following heat treatment was found to be important to the tensile properties of the dual phase steels. In this paper, we report the results of the investigation of cooling rate on the microstructures and mechanical properties of several vanadium HSLA steels.The steels with composition (in weight percent) listed below were supplied by China Steel Corporation: 1. low V steel (0.11C, 0.65Si, 1.63Mn, 0.015P, 0.008S, 0.084Aℓ, 0.004V), 2. 0.059V steel (0.13C, 0.62S1, 1.59Mn, 0.012P, 0.008S, 0.065Aℓ, 0.059V), 3. 0.10V steel (0.11C, 0.58Si, 1.58Mn, 0.017P, 0.008S, 0.068Aℓ, 0.10V).


2019 ◽  
Vol 35 (3) ◽  
pp. 371-391
Author(s):  
AKANSHA DIXIT ◽  
◽  
DIBYENDU S. BAG ◽  
DHIRENDRA KUMAR SHARMA ◽  
HARJEET SINGH ◽  
...  

Alloy Digest ◽  
1994 ◽  
Vol 43 (11) ◽  

Abstract CARLSON ALLOYS C600 AND C600 ESR have excellent mechanical properties from sub-zero to elevated temperatures with excellent resistance to oxidation at high temperatures. It is a solid-solution alloy that can be hardened only by cold working. High strength at temperature is combined with good workability. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, and machining. Filing Code: Ni-470. Producer or source: G.O. Carlson Inc.


Alloy Digest ◽  
1975 ◽  
Vol 24 (9) ◽  

Abstract BERYLCO NICKEL ALLOY 440 is an age-hardenable nickel-beryllium-titanium alloy that offers high strength, excellent spring properties outstanding formability, good high-temperature mechanical properties, and resistance to corrosion and fatigue. Complex shapes can be produced in the solution-treated (soft) condition and then aged to a minimum tensile strength of 215,500 psi. It is used for mechanical and electrical/electronic components in the temperature range -320 to 800 F. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-94. Producer or source: Kawecki Berylco Industries Inc.. Originally published September 1964, revised September 1975.


Alloy Digest ◽  
1986 ◽  
Vol 35 (7) ◽  

Abstract UNS No. A97075 is a wrought precipitation-hardenable aluminum alloy. It has excellent mechanical properties, workability and response to heat treatment and refrigeration. Its typical uses comprise aircraft structural parts and other highly stressed structural applications where very high strength and good resistance to corrosion are required. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on low temperature performance as well as forming, heat treating, and machining. Filing Code: Al-269. Producer or source: Various aluminum companies.


Alloy Digest ◽  
1983 ◽  
Vol 32 (6) ◽  

Abstract JESSOP JS600 is a nickel-chromium-iron alloy for use in environments requiring resistance to heat and/or corrosion. It has excellent mechanical properties and a combination of high strength and good workability. It performs well in applications with temperatures from cryogenic to more than 2000 F. Its many applications include aircraft/aerospace components, equipment for chemical and food processing and parts for heat-treating equipment. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-287. Producer or source: Jessop Steel Company.


Sign in / Sign up

Export Citation Format

Share Document