scholarly journals Spectroscopic characterization of the structural properties of quinoxalinophenanthrophenazine thin films

2018 ◽  
Vol 6 (4) ◽  
pp. 781-789 ◽  
Author(s):  
Ewelina Z. Fratczak ◽  
Tomasz Makowski ◽  
Rasha M. Moustafa ◽  
Tarek H. El-Assaad ◽  
Marek E. Moneta ◽  
...  

Thin film structural features of TQPP-Me and TQPP-OC12 as explored by spectroscopic and ellipsometric techniques.

1988 ◽  
Vol 66 (5) ◽  
pp. 373-375 ◽  
Author(s):  
C. J. Arsenault ◽  
D. E. Brodie

Zn-rich and P-rich amorphous Zn3P2 thin films were prepared by co-evaporation of the excess element during the normal Zn3P2 deposition. X-ray diffraction techniques were used to investigate the structural properties and the crystallization process. Agglomeration of the excess element within the as-made amorphous Zn3P2 thin film accounted for the structural properties observed after annealing the sample. Electrical measurements showed that excess Zn reduces the conductivity activation energy and increases the conductivity, while excess P up to 15 at.% does not alter the electrical properties significantly.


2011 ◽  
Vol 239-242 ◽  
pp. 891-894 ◽  
Author(s):  
Tsung Fu Chien ◽  
Jen Hwan Tsai ◽  
Kai Huang Chen ◽  
Chien Min Cheng ◽  
Chia Lin Wu

In this study, thin films of CaBi4Ti4O15with preferential crystal orientation were prepared by the chemical solution deposition (CSD) technique on a SiO2/Si substrate. The films consisted of a crystalline phase of bismuth-layer-structured dielectric. The as-deposited CaBi4Ti4O15thin films were crystallized in a conventional furnace annealing (RTA) under the temperature of 700 to 800°C for 1min. Structural and morphological characterization of the CBT thin films were investigated by X-ray diffraction (XRD) and field-emission scanning electron microscope (FE-SEM). The impedance analyzer HP4294A and HP4156C semiconductor parameters analyzer were used to measurement capacitance voltage (C-V) characteristics and leakage current density of electric field (J-E) characteristics by metal-ferroelectric-insulator- semiconductor (MFIS) structure. By the experimental result the CBT thin film in electrical field 20V, annealing temperature in 750°C the CBT thin film leaks the electric current is 1.88x10-7A/cm2and the memory window is 1.2V. In addition, we found the strongest (119) peak of as-deposited thin films as the annealed temperature of 750°C


2020 ◽  
Vol 236 ◽  
pp. 04002 ◽  
Author(s):  
Yuri Gerelli

Over the last 10 years, neutron reflectometry (NR) has emerged as a powerful technique for the investigation of biologically relevant thin films. The great advantage of NR with respect to many other surface-sensitive techniques is its sub-nanometer resolution that enables structural characterizations at the molecular level. In the case of bio-relevant samples, NR is non-destructive and can be used to probe thin films at buried interfaces or enclosed in bulky sample environment equipment. Moreover, recent advances in biomolecular deutera-tion enabled new labeling strategies to highlight certain structural features and to resolve with better accuracy the location of chemically similar molecules within a thin film. In this chapter I will describe some applications of NR to bio-relevant samples and discuss some of the data analysis approaches available for biological thin films. In particular, examples on the structural characterization of biomembranes, protein films and protein-lipid interactions will be described.


2019 ◽  
Vol 26 (5) ◽  
pp. 1600-1611 ◽  
Author(s):  
Gihan Kwon ◽  
Yeong-Ho Cho ◽  
Ki-Bum Kim ◽  
Jonathan D. Emery ◽  
In Soo Kim ◽  
...  

Porous, high-surface-area electrode architectures are described that allow structural characterization of interfacial amorphous thin films with high spatial resolution under device-relevant functional electrochemical conditions using high-energy X-ray (>50 keV) scattering and pair distribution function (PDF) analysis. Porous electrodes were fabricated from glass-capillary array membranes coated with conformal transparent conductive oxide layers, consisting of either a 40 nm–50 nm crystalline indium tin oxide or a 100 nm–150 nm-thick amorphous indium zinc oxide deposited by atomic layer deposition. These porous electrodes solve the problem of insufficient interaction volumes for catalyst thin films in two-dimensional working electrode designs and provide sufficiently low scattering backgrounds to enable high-resolution signal collection from interfacial thin-film catalysts. For example, PDF measurements were readily obtained with 0.2 Å spatial resolution for amorphous cobalt oxide films with thicknesses down to 60 nm when deposited on a porous electrode with 40 µm-diameter pores. This level of resolution resolves the cobaltate domain size and structure, the presence of defect sites assigned to the domain edges, and the changes in fine structure upon redox state change that are relevant to quantitative structure–function modeling. The results suggest the opportunity to leverage the porous, electrode architectures for PDF analysis of nanometre-scale surface-supported molecular catalysts. In addition, a compact 3D-printed electrochemical cell in a three-electrode configuration is described which is designed to allow for simultaneous X-ray transmission and electrolyte flow through the porous working electrode.


2000 ◽  
Vol 655 ◽  
Author(s):  
Masanori Okuyama ◽  
Toshiyuki Nakaiso ◽  
Minoru Noda

AbstractSr2(Ta1划x, Nbx)2O7(STN) ferroelectric thin films have been prepared on SiO2/Si(100) substrates by the pulsed laser deposition (PLD) method. Preferential (110) and (151)-oriented STN thin films are deposited at a low temperature of 600°C in N2O ambient gas at 0.08 Torr. A counterclockwise C-V hysteresis was observed in the metal-ferroelectric-insulator-semiconductor (MFIS) structure using Sr2(Ta0.7, Nb0.3)2O7 on SiO2/Si deposited at 600°C. Memory window in the C-V curve spreads symmetrically towards both positive and negative directions when applied voltage increases and the window does not change in sweep rates ranging from 0.1 to 4.0×103 V/s. The C-V curve of the MFIS structure does not degrade after 1010 cycles of polarization reversal. The gate retention time is about 3.0×103 sec when the voltages and time of write pulse are ±15V and 1.0 sec, respectively, and hold bias was -0.5 V.


Sign in / Sign up

Export Citation Format

Share Document