scholarly journals The combined effects of silicon dioxide nanoparticles and cold air exposure on the metabolism and inflammatory responses in white adipocytes

2017 ◽  
Vol 6 (5) ◽  
pp. 705-710
Author(s):  
Yongqiang Zhang ◽  
Xi Li ◽  
Yangsheng Lin ◽  
Li Zhang ◽  
Zhan Guo ◽  
...  

The potential hazard of nanoparticles (NPs) from air pollution has attracted widespread attention.

Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2247 ◽  
Author(s):  
Je-Won Ko ◽  
Hae-Jun Lee ◽  
Na-Rae Shin ◽  
Yun-Soo Seo ◽  
Sung-Ho Kim ◽  
...  

Silicon dioxide nanoparticles (SiONPs), which are metal oxide nanoparticles, have been used in a wide variety of applications. In this study, acute pulmonary responses were examined after the intranasal instillation of SiONPs in mice primed with or without lipopolysaccharide (LPS, intranasal, 5 µg/mouse). The exposure to SiONPs increased the inflammatory cell counts and proinflammatory cytokines in the bronchoalveolar lavage fluid. SiONPs induced airway inflammation with increases in the phosphorylation of mitogen-activated protein kinases (MAPKs). The ratios of the inflammatory responses induced by the SiONPs were increased in the acute pulmonary disease model primed by LPS. Taken together, SiONPs exhibited toxicity to the respiratory system, which was associated with MAPK phosphorylation. In addition, the exposure to SiONPs exacerbated any existing inflammatory pulmonary diseases. These data showed the additive, as well as synergistic, interaction effects of SiONPs and LPS. We conclude that the exposure to SiONPs causes potential toxicity in humans, especially those with respiratory diseases.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jun Diao ◽  
Yinyin Xia ◽  
Xuejun Jiang ◽  
Jingfu Qiu ◽  
Shuqun Cheng ◽  
...  

Abstract Background Silicon dioxide nanoparticles (SiO2NPs) are widely used as additive in the food industry with controversial health risk. Gut microbiota is a new and hot topic in the field of nanotoxicity. It also contributes a novel and insightful view to understand the potential health risk of food-grade SiO2NPs in children, who are susceptible to the toxic effects of nanoparticles. Methods In current study, the young mice were orally administrated with vehicle or SiO2NPs solution for 28 days. The effects of SiO2NPs on the gut microbiota were detected by 16S ribosomal RNA (rRNA) gene sequencing, and the neurobehavioral functions were evaluated by open field test and Morris water maze. The level of inflammation, tissue integrity of gut and the classical indicators involved in gut–brain, gut–liver and gut–lung axis were all assessed. Results Our results demonstrated that SiO2NPs significantly caused the spatial learning and memory impairments and locomotor inhibition. Although SiO2NPs did not trigger evident intestinal or neuronal inflammation, they remarkably damaged the tissue integrity. The microbial diversity within the gut was unexpectedly enhanced in SiO2NPs-treated mice, mainly manifested by the increased abundances of Firmicutes and Patescibacteria. Intriguingly, we demonstrated for the first time that the neurobehavioral impairments and brain damages induced by SiO2NPs might be distinctively associated with the disruption of gut–brain axis by specific chemical substances originated from gut, such as Vipr1 and Sstr2. Unapparent changes in liver or lung tissues further suggested the absence of gut–liver axis or gut–lung axis regulation upon oral SiO2NPs exposure. Conclusion This study provides a novel idea that the SiO2NPs induced neurotoxic effects may occur through distinctive gut–brain axis, showing no significant impact on either gut–lung axis or gut–liver axis. These findings raise the exciting prospect that maintenance and coordination of gastrointestinal functions may be critical for protection against the neurotoxicity of infant foodborne SiO2NPs.


2021 ◽  
Vol 13 (9) ◽  
pp. 4933
Author(s):  
Saimar Pervez ◽  
Ryuta Maruyama ◽  
Ayesha Riaz ◽  
Satoshi Nakai

Ambient air pollution and its exposure has been a worldwide issue and can increase the possibility of health risks especially in urban areas of developing countries having the mixture of different air pollution sources. With the increase in population, industrial development and economic prosperity, air pollution is one of the biggest concerns in Pakistan after the occurrence of recent smog episodes. The purpose of this study was to develop a land use regression (LUR) model to provide a better understanding of air exposure and to depict the spatial patterns of air pollutants within the city. Land use regression model was developed for Lahore city, Pakistan using the average seasonal concentration of NO2 and considering 22 potential predictor variables including road network, land use classification and local specific variable. Adjusted explained variance of the LUR models was highest for post-monsoon (77%), followed by monsoon (71%) and was lowest for pre-monsoon (70%). This is the first study conducted in Pakistan to explore the applicability of LUR model and hence will offer the application in other cities. The results of this study would also provide help in promoting epidemiological research in future.


Cell Reports ◽  
2021 ◽  
Vol 34 (12) ◽  
pp. 108882
Author(s):  
Paul S. Baxter ◽  
Owen Dando ◽  
Katie Emelianova ◽  
Xin He ◽  
Sean McKay ◽  
...  

Toxics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 51
Author(s):  
Jorge Humberto Limón-Pacheco ◽  
Natalie Jiménez-Barrios ◽  
Alejandro Déciga-Alcaraz ◽  
Adriana Martínez-Cuazitl ◽  
Mónica Maribel Mata-Miranda ◽  
...  

Some studies have shown that silicon dioxide nanoparticles (SiO2-NPs) can reach different regions of the brain and cause toxicity; however, the consequences of SiO2-NPs exposure on the diverse brain cell lineages is limited. We aimed to investigate the neurotoxic effects of SiO2-NP (0–100 µg/mL) on rat astrocyte-rich cultures or neuron-rich cultures using scanning electron microscopy, Attenuated Total Reflection-Fourier Transform Infrared spectroscopy (ATR-FTIR), FTIR microspectroscopy mapping (IQ mapping), and cell viability tests. SiO2-NPs were amorphous particles and aggregated in saline and culture media. Both astrocytes and neurons treated with SiO2-NPs showed alterations in cell morphology and changes in the IR spectral regions corresponding to nucleic acids, proteins, and lipids. The analysis by the second derivative revealed a significant decrease in the signal of the amide I (α-helix, parallel β-strand, and random coil) at the concentration of 10 µg/mL in astrocytes but not in neurons. IQ mapping confirmed changes in nucleic acids, proteins, and lipids in astrocytes; cell death was higher in astrocytes than in neurons (10–100 µg/mL). We conclude that astrocytes were more vulnerable than neurons to SiO2-NPs toxicity. Therefore, the evaluation of human exposure to SiO2-NPs and possible neurotoxic effects must be followed up.


1994 ◽  
Vol 26 (Supplement) ◽  
pp. S213
Author(s):  
B. J. Freund ◽  
J. M. McKay ◽  
D. E. Roberts ◽  
J. E. Laird ◽  
C. O??Brien ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document