A luminescent europium complex for wide-range pH sensors and sensor microtiterplates

The Analyst ◽  
2018 ◽  
Vol 143 (13) ◽  
pp. 3176-3183 ◽  
Author(s):  
Wafaa Waleed Al-Qaysi ◽  
Axel Duerkop

Luminescent sensor membranes and sensor microplates are presented for continuous or high-throughput wide-range measurement of pH based on a europium probe.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ali Rohani ◽  
Jennifer A. Kashatus ◽  
Dane T. Sessions ◽  
Salma Sharmin ◽  
David F. Kashatus

Abstract Mitochondria are highly dynamic organelles that can exhibit a wide range of morphologies. Mitochondrial morphology can differ significantly across cell types, reflecting different physiological needs, but can also change rapidly in response to stress or the activation of signaling pathways. Understanding both the cause and consequences of these morphological changes is critical to fully understanding how mitochondrial function contributes to both normal and pathological physiology. However, while robust and quantitative analysis of mitochondrial morphology has become increasingly accessible, there is a need for new tools to generate and analyze large data sets of mitochondrial images in high throughput. The generation of such datasets is critical to fully benefit from rapidly evolving methods in data science, such as neural networks, that have shown tremendous value in extracting novel biological insights and generating new hypotheses. Here we describe a set of three computational tools, Cell Catcher, Mito Catcher and MiA, that we have developed to extract extensive mitochondrial network data on a single-cell level from multi-cell fluorescence images. Cell Catcher automatically separates and isolates individual cells from multi-cell images; Mito Catcher uses the statistical distribution of pixel intensities across the mitochondrial network to detect and remove background noise from the cell and segment the mitochondrial network; MiA uses the binarized mitochondrial network to perform more than 100 mitochondria-level and cell-level morphometric measurements. To validate the utility of this set of tools, we generated a database of morphological features for 630 individual cells that encode 0, 1 or 2 alleles of the mitochondrial fission GTPase Drp1 and demonstrate that these mitochondrial data could be used to predict Drp1 genotype with 87% accuracy. Together, this suite of tools enables the high-throughput and automated collection of detailed and quantitative mitochondrial structural information at a single-cell level. Furthermore, the data generated with these tools, when combined with advanced data science approaches, can be used to generate novel biological insights.


2010 ◽  
Vol 76 (16) ◽  
pp. 5363-5372 ◽  
Author(s):  
Adrien Y. Burch ◽  
Briana K. Shimada ◽  
Patrick J. Browne ◽  
Steven E. Lindow

ABSTRACT A novel biosurfactant detection assay was developed for the observation of surfactants on agar plates. By using an airbrush to apply a fine mist of oil droplets, surfactants can be observed instantaneously as halos around biosurfactant-producing colonies. This atomized oil assay can detect a wide range of different synthetic and bacterially produced surfactants. This method could detect much lower concentrations of many surfactants than a commonly used water drop collapse method. It is semiquantitative and therefore has broad applicability for uses such as high-throughput mutagenesis screens of biosurfactant-producing bacterial strains. The atomized oil assay was used to screen for mutants of the plant pathogen Pseudomonas syringae pv. syringae B728a that were altered in the production of biosurfactants. Transposon mutants displaying significantly altered surfactant halos were identified and further analyzed. All mutants identified displayed altered swarming motility, as would be expected of surfactant mutants. Additionally, measurements of the transcription of the syringafactin biosynthetic cluster in the mutants, the principal biosurfactant known to be produced by B728a, revealed novel regulators of this pathway.


2020 ◽  
Author(s):  
Alexandra Lubin ◽  
Jason Otterstrom ◽  
Yvette Hoade ◽  
Ivana Bjedov ◽  
Eleanor Stead ◽  
...  

AbstractZebrafish provide a unique opportunity for drug screening in living animals, with the fast developing, transparent embryos allowing for relatively high throughput, microscopy-based screens. However, the limited availability of rapid, flexible imaging and analysis platforms has limited the use of zebrafish in drug screens. We have developed a easy-to-use, customisable automated screening procedure suitable for high-throughput phenotype-based screens of live zebrafish. We utilised the WiScan®Hermes High Content Imaging System to rapidly acquire brightfield and fluorescent images of embryos, and the WiSoft®Athena Zebrafish Application for analysis, which harnesses an Artificial Intelligence-driven algorithm to automatically detect fish in brightfield images, identify anatomical structures, partition the animal into regions, and exclusively select the desired side-oriented fish. Our initial validation combined structural analysis with fluorescence images to enumerate GFP-tagged haematopoietic stem and progenitor cells in the tails of embryos, which correlated with manual counts. We further validated this system to assess the effects of genetic mutations and x-ray irradiation in high content using a wide range of assays. Further, we performed simultaneous analysis of multiple cell types using dual fluorophores in high throughput. In summary, we demonstrate a broadly applicable and rapidly customisable platform for high content screening in zebrafish.


2021 ◽  
Author(s):  
Diana Wu ◽  
Chelsea Gordon ◽  
John Shin ◽  
Michael Eisenstein ◽  
Hyongsok Tom Soh

Although antibodies are a powerful tool for molecular biology and clinical diagnostics, there are many emerging applications for which nucleic acid-based aptamers can be advantageous. However, generating high-quality aptamers with sufficient affinity and specificity for biomedical applications is a challenging feat for most research laboratories. In this Account, we describe four techniques developed in our lab to accelerate the discovery of high quality aptamer reagents that can achieve robust binding even for challenging molecular targets. The first method is particle display, in which we convert solution-phase aptamers into aptamer particles that can be screened via fluorescence-activated cell sorting (FACS) to quantitatively isolate individual aptamer particles based on their affinity. This enables the efficient isolation of high-affinity aptamers in fewer selection rounds than conventional methods, thereby minimizing selection biases and reducing the emergence of artifacts in the final aptamer pool. We subsequently developed the multi-parametric particle display (MPPD) method, which employs two-color FACS to isolate aptamer particles based on both affinity and specificity, yielding aptamers that exhibit excellent target binding even in complex matrices like serum. The third method is a click chemistry-based particle display (click-PD) that enables the generation and high-throughput screening of non-nattural aptamers with a wide range of base modifications. We have shown that these base-modified aptamers can achieve robust affinity and specificity for targets that have proven challenging or inaccessible with natural nucleotide-based aptamer libraries. Lastly, we describe the non-natural aptamer array (N2A2) platform, in which a modified benchtop sequencing instrument is used to characterize base-modified aptamers in a massively parallel fashion, enabling the efficient identification of molecules with excellent affinity and specificity for their targets. This system first generates aptamer clusters on the flow-cell surface that incorporate alkyne-modified nucleobases, and then performs a click reaction to couple those nucleobases to an azide-modified chemical moiety. This yields a sequence-defined array of tens of millions of base-modified sequences, which can then be characterized in a high-throughput fashion. Collectively, we believe that these advancements are helping to make aptamer technology more accessible, efficient, and robust, thereby enabling the use of these affinity reagents for a wider range of molecular recognition and detection-based applications.


2021 ◽  
Author(s):  
Meng Ge ◽  
Yanzhi Wang ◽  
Francesco Carraro ◽  
Weibin Liang ◽  
Morteza Roostaeinia ◽  
...  

<p>Metal-organic frameworks (MOFs) are known for their versatile combination of inorganic building units and organic linkers, which offers immense opportunities in a wide range of applications. However, many MOFs are typically synthesized as multiphasic polycrystalline powders, which are challenging for studies by X-ray diffraction. Therefore, developing new structural characterization techniques is highly desired in order to accelerate discoveries of new materials. Here, we report a high-throughput approach for structural analysis of MOF nano- and sub-microcrystals by three-dimensional electron diffraction (3DED). A new zeolitic-imidazolate framework (ZIF), denoted ZIF-EC1<a>, </a>was first discovered in a trace amount during the study of a known ZIF-CO<sub>3</sub>-1 material by 3DED. The structures of both ZIFs were solved and refined using 3DED data. ZIF-EC1 has a dense 3D framework structure, which is built by linking mono- and bi-nuclear Zn clusters and 2-methylimidazolates (mIm<sup>-</sup>). With a composition of Zn<sub>3</sub>(mIm)<sub>5</sub>(OH), ZIF-EC1 exhibits high N and Zn densities. We show that the N-doped carbon material derived from ZIF-EC1 is a promising electrocatalysis for oxygen reduction reaction (ORR). The discovery of this new MOF and its conversion to an efficient electrocatalyst highlights the power of 3DED in developing new materials and their applications. </p>


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Xing Zhao ◽  
Gaozhi Ou ◽  
Mengcheng Lei ◽  
Yang Zhang ◽  
Lina Li ◽  
...  

Cells in native microenvironment are subjected to varying combinations of biochemical cues and mechanical cues in a wide range. Despite many signaling pathways have been found to be responsive for...


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 56-56
Author(s):  
Michael Thomson

Abstract The precision and ease of use of CRISPR nucleases, such as Cas9 and Cpf1, for plant genome editing has the potential to accelerate a wide range of applications for crop improvement. For upstream research on gene discovery and validation, rapid gene knock-outs can enable testing of single genes and multi-gene families for functional effects. Large chromosomal deletions can test the function of tandem gene arrays and assist with positional cloning of QTLs by helping to narrow down the target region. Nuclease-deactivated Cas9 fusion proteins with transcriptional activators and repressors can be used to up and down-regulate gene expression. Even more promising, gene insertions and allele replacements can provide the opportunity to rapidly test the effects of different alleles at key loci in the same genetic background, providing a more precise alternative to marker-assisted backcrossing. Recently, Texas A&M AgriLife Research has supported the development of a Crop Genome Editing Lab at Texas A&M working towards optimizing a high-throughput gene editing pipeline and providing an efficient and cost-effective gene editing service for research and breeding groups. The lab is using rice as a model to test and optimize new approaches aimed towards overcoming current bottlenecks. For example, a wealth of genomics data from the rice community enables the development of novel approaches to predict which genes and target modifications may be most beneficial for crop improvement, taking advantage of known major genes, high-resolution GWAS data, multiple high-quality reference genomes, transcriptomics data, and resequencing data from the 3,000 Rice Genomes Project. Current projects have now expanded to work across multiple crops to provide breeding and research groups with a rapid gene editing pipeline to test candidate genes in their programs, with the ultimate goal of developing nutritious, high-yielding, stress-tolerant crops for the future.


2016 ◽  
Vol 44 (14) ◽  
pp. e123-e123 ◽  
Author(s):  
Yun Zheng ◽  
Bo Ji ◽  
Renhua Song ◽  
Shengpeng Wang ◽  
Ting Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document