A novel homochiral metal–organic framework with an expanded open cage based on (R)-3,3′-bis(6-carboxy-2-naphthyl)-2,2′-dihydroxy-1,1′-binaphthyl: synthesis, X-ray structure and efficient HPLC enantiomer separation

CrystEngComm ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 487-493 ◽  
Author(s):  
Koichi Tanaka ◽  
Tomohiro Kawakita ◽  
Maja Morawiak ◽  
Zofia Urbanczyk-Lipkowska

A new homochiral MOF with an expanded open cage was synthesized and utilized as a chiral stationary phase for HPLC.

2016 ◽  
Vol 40 (6) ◽  
pp. 4891-4894 ◽  
Author(s):  
Koichi Tanaka ◽  
Naoki Hotta ◽  
Shohei Nagase ◽  
Kenji Yoza

HPLC enantioseparation of various racemates using novel pillared homochiral MOF–silica composite as chiral stationary phase has been successfully demonstrated.


RSC Advances ◽  
2017 ◽  
Vol 7 (58) ◽  
pp. 36297-36301 ◽  
Author(s):  
Cheng-Xiong Yang ◽  
Yu-Zhen Zheng ◽  
Xiu-Ping Yan

A γ-cyclodextrin metal–organic framework was applied as an efficient chiral stationary phase for HPLC separation of chiral aromatic alcohols.


2008 ◽  
Vol 73 (1) ◽  
pp. 24-31
Author(s):  
Dayu Wu ◽  
Genhua Wu ◽  
Wei Huang ◽  
Zhuqing Wang

The compound [Cd(4,4'-bpy)2(H2O)2](ClO4)2·(L)2 was obtained by the reaction of Cd(ClO4)2, bis(1-pyrazinylethylidene)hydrazine (L) and 4,4'-bipyridine in aqueous MeOH. Single-crystal X-ray diffraction has revealed its two-dimensional metal-organic framework. The 2-D layers superpose on each other, giving a channel structure. The square planar grids consist of two pairs of shared edges with Cd(II) ion and a 4,4'-bipyridine molecule each vertex and side, respectively. The square cavity has a dimension of 11.817 × 11.781 Å. Two guest molecules of bis(1-pyrazinylethylidene)hydrazine are clathrated in every hydrophobic host cavity, being further stabilized by π-π stacking and hydrogen bonding. The results suggest that the hydrazine molecules present in the network serve as structure-directing templates in the formation of crystal structures.


2021 ◽  
Author(s):  
Gregory M. Su ◽  
Han Wang ◽  
Brandon R. Barnett ◽  
Jeffrey R. Long ◽  
David Prendergast ◽  
...  

In situ near edge X-ray absorption fine structure spectroscopy directly probes unoccupied states associated with backbonding interactions between the open metal site in a metal–organic framework and various small molecule guests.


2019 ◽  
Vol 2 (3) ◽  
pp. 1197-1203 ◽  
Author(s):  
Lee Robison ◽  
Lin Zhang ◽  
Riki J. Drout ◽  
Peng Li ◽  
Chad R. Haney ◽  
...  

Langmuir ◽  
2009 ◽  
Vol 25 (6) ◽  
pp. 3618-3626 ◽  
Author(s):  
Stuart R. Miller ◽  
Paul A. Wright ◽  
Thomas Devic ◽  
Christian Serre ◽  
Gérard Férey ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
José María Rivera ◽  
Susana Rincón ◽  
Cherif Ben Youssef ◽  
Alejandro Zepeda

Mesoporous metal-organic framework-5 (MOF-5), with the composition Zn4O(BDC)3, showed a high capacity for the adsorptive removal of Pb(II) from 100% aqueous media. After the adsorption process, changes in both morphology and composition were detected using a scanning electron microscope (SEM) equipped with an energy dispersive X-ray (EDX) system, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) analysis. The experimental evidence showed that Zn(II) liberation from MOF-5 structure was provoked by the water effect demonstrating that Pb(II) removal is not due to ionic exchange with Zn. A kinetic study showed that Pb(II) removal was carried out in 30 min with a behavior of pseudo-second-order kinetic model. The experimental data on Pb(II) adsorption were adequately fit by both the Langmuir and BET isotherm models with maximum adsorption capacities of 658.5 and 412.7 mg/g, respectively, at pH 5 and 45°C. The results of this work demonstrate that the use of MOF-5 has great potential for applications in environmental protection, especially regarding the removal of the lead present in industrial wastewaters and tap waters.


Sign in / Sign up

Export Citation Format

Share Document