scholarly journals Ab initio molecular dynamics of atomic-scale surface reactions: insights into metal organic chemical vapor deposition of AlN on graphene

2018 ◽  
Vol 20 (26) ◽  
pp. 17751-17761 ◽  
Author(s):  
D. G. Sangiovanni ◽  
G. K. Gueorguiev ◽  
A. Kakanakova-Georgieva

Density-functional molecular dynamics simulations provide plausible interpretations of atomistic and electronic processes responsible for delivery of Al, C adatoms, and C–Al, CHx, AlNH2 admolecules on pristine graphene via precursor/surface reactions.

Author(s):  
Lijuan Meng ◽  
Jinlian Lu ◽  
Yujie Bai ◽  
Lili Liu ◽  
Tang Jingyi ◽  
...  

Understanding the fundamentals of chemical vapor deposition bilayer graphene growth is crucial for its synthesis. By employing density functional theory calculations and classical molecular dynamics simulations, we have investigated the...


1997 ◽  
Vol 482 ◽  
Author(s):  
Christian Kisielowski ◽  
Olaf Schmidt ◽  
Jinwei Yang

AbstractA GaN/AlxGalxN multi-quantum well test structure with Al concentrations 0 ≤ xAl ≤ 1 was utilized to investigate the growth of AlxGal–xN barrier layers deposited by metal organic chemical vapor deposition (MOCVD). A transition from a two dimensional (2D) to a three dimensional (3D) growth mode was observed in AlxGa1–xN barriers with XAl ≥ 0.75. It is argued that the transition occurs because of growth at temperatures that are low compared with the materials melting points Tmelt. The resulting rough AlxGa1–xN surfaces can be planarized by overgrowth with GaN. Quantitative high resolution electron microscopy (HREM) was applied to measure composition and strain profiles across the GaN/AlxGa1−xN stacks at an atomic level. The measurements reveal a substantial variation of lattice constants at the AlxGa1−xN/GaN interfaces that is attributed to an Al accumulation.


2009 ◽  
Vol 81 (8) ◽  
pp. 1523-1534 ◽  
Author(s):  
François Weiss ◽  
Marc Audier ◽  
Ausrine Bartasyte ◽  
Daniel Bellet ◽  
Cécile Girardot ◽  
...  

The development of thin films, in the context of ongoing reduction in the size of electronic systems, poses challenging questions for the materials sciences of multifunctional nanostructures. These include the limits of size reduction, integration of heterogeneous functions, and system characterization or process control at an atomic scale. We present here different studies devoted to perovskite oxide materials (or materials with derived structure), where in specific directions of the crystal structure the atomic organization decreases down to a few nanometers, thus building nanostructures. In these materials, very original physical phenomena are observed in multilayers or superlattices, nanowires (NWs) or nanodots, mainly because strain, surfaces, and interfaces play here a predominant role and can tune the physical properties. Metal-organic chemical vapor deposition (MOCVD) routes have been used for the synthesis of oxide materials. We first introduce the basic rules governing the choice of metal-organic precursors for the MOCVD reaction. Next we discuss the principles of the pulsed injection MOCVD system. A laser-assisted MOCVD system, designed to the direct growth of 2D and 3D photonic structures, will also be described. Selected case studies will finally be presented, illustrating the powerful development of different oxide nanostructures based on dielectric, ferroelectric, or superconducting oxides, manganites, and nickelates, as well as first results related to the growth of ZnO NWs.


2009 ◽  
Vol 87 (10) ◽  
pp. 1512-1520 ◽  
Author(s):  
Greg M. Berner ◽  
Allan L. L. East

The β scission (cracking) of branched carbenium ions have been observed in molecular dynamics simulations, possibly for the first time. Simulations were performed with molecular dynamics based on PW91 density functional theory, and which included three-dimensional periodic boundary replication of the unit cell to mimic long-range bulk effects. A rising-temperature algorithm was used to encourage reaction within the narrow time windows (∼10 ps) of the simulations. Twenty-eight simulations were performed, featuring alkyl ions in three different catalytic systems: the ionic liquid, [(C5H5NH+)5(Al2Cl7−)6]−, the chabazite zeolite, [AlSi23O48]−, and the chabazite zeolite, [Al4Si20O45(OH)3]−. Twenty-four runs began with unbranched sec-n-alkyl ions, but only one exhibited β scission, and only after branching to a tertiary ion and under extreme heating. In contrast, the four simulations that began with branched alkyl ions were all successful in demonstrating β scission at lower temperatures: 2,4,4-trimethyl-2-pentyl ion and 2,4-dimethyl-2-hexyl ion in each of the first two catalysts. The lifetimes of desorbed alkyl ions in the chabazite models were < 5 ps at 1000–1500 K. The β scission results support the classical Weitkamp et al. ( Appl. Catal. 1983, 8, 123 ) mechanism over the nonclassical Sie ( Ind. Eng. Chem. Res. 1992, 31, 1881 ) and the chemisorping Kazansky et al. ( J. Catal. 1989, 119, 108 ) mechanisms.


2005 ◽  
Vol 475-479 ◽  
pp. 1705-1714
Author(s):  
Masanori Murakami ◽  
Yasuo Koide ◽  
Miki Moriyama ◽  
Susumu Tsukimoto

Recent strong demands for optoelectronic communication and portable telephones have encouraged engineers to develop optoelectronic devices, microwave devices, and high-speed devices using heterostructural compound semiconductors. Although the compound crystal growth techniques had reached at a level to control the compositional stoichiometry and crystal defects on a nearly atomic scale by the advanced techniques such as molecular beam epitaxy and metal organic chemical vapor deposition techniques, development of ohmic contact materials (which play a key role to inject external electric current from the metals to the semiconductors) was still on a trial-and-error basis. Our research efforts have been focused to develop, low resistance, refractory ohmic contact materials using the deposition and annealing techniques for n-GaAs, p-ZnSe, InP, p-SiC p-CdTe etc. It was found the growth of homo- or hetero–epitaxial intermediate semiconductor layers (ISL) was essential for low resistance contact formation. The importance of hetero-structural ISL was given taking an example of n-type ohmic contact for GaAs.


2018 ◽  
Vol 232 (7-8) ◽  
pp. 973-987 ◽  
Author(s):  
Daniel Sebastiani

Abstract We investigate the effect of several nanoscale confinements on structural and dynamical properties of liquid water and binary aqueous mixtures. By means of molecular dynamics simulations based on density functional theory and atomistic force fields. Our main focus is on the dependence on the structure and the hydrogen-bonding-network of the liquids near the confinement interface at atomistic resolution. As a complementary aspect, spatially resolved profiles of the proton NMR chemical shift values are used to quantify the local strength of the hydrogen-bond-network.


2018 ◽  
Vol 20 (36) ◽  
pp. 23717-23725 ◽  
Author(s):  
Vesa Hänninen ◽  
Garold Murdachaew ◽  
Gilbert M. Nathanson ◽  
R. Benny Gerber ◽  
Lauri Halonen

Ab initio molecular dynamics simulations of formic acid (FA) dimer colliding with liquid water at 300 K have been performed using density functional theory.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 8
Author(s):  
Huili Lu ◽  
Shi-Wei Liu ◽  
Mengyang Li ◽  
Baocai Xu ◽  
Li Zhao ◽  
...  

Carbonic acid is an important species in a variety of fields and has long been regarded to be non-existing in isolated state, as it is thermodynamically favorable to decompose into water and carbon dioxide. In this work, we systematically studied a novel ionic complex [H2CO3·HSO4]− using density functional theory calculations, molecular dynamics simulations, and topological analysis to investigate if the exotic H2CO3 molecule could be stabilized by bisulfate ion, which is a ubiquitous ion in various environments. We found that bisulfate ion could efficiently stabilize all the three conformers of H2CO3 and reduce the energy differences of isomers with H2CO3 in three different conformations compared to the isolated H2CO3 molecule. Calculated isomerization pathways and ab initio molecular dynamics simulations suggest that all the optimized isomers of the complex have good thermal stability and could exist at finite temperatures. We also explored the hydrogen bonding properties in this interesting complex and simulated their harmonic infrared spectra to aid future infrared spectroscopic experiments. This work could be potentially important to understand the fate of carbonic acid in certain complex environments, such as in environments where both sulfuric acid (or rather bisulfate ion) and carbonic acid (or rather carbonic dioxide and water) exist.


2021 ◽  
Author(s):  
Monika Gešvandtnerová ◽  
Dario Rocca ◽  
Tomas Bucko

<div>In this work we present a detailed \textit{ab initio} study of the carbonylation reaction of methoxy groups in the zeolite mordenite, as it is the rate determining step in a series of elementary reactions leading to ethanol. </div><div>For the first time we employ full molecular dynamics simulations to evaluate free energies of activation for the reactions in side pockets and main channels. Results show that the reaction in the side pocket is preferred and, when dispersion interactions are taken into account, this preference becomes even stronger. This conclusion is confirmed using multiple levels of density functional theory approximations with (PBE-D2, PBE-MBD, and vdW-DF2-B86R) or without (PBE, HSE06) dispersion corrections. These calculations, that in principle would require several demanding molecular dynamics simulations, were made possible at a minimal computational cost by using a newly developed approach that combines thermodynamic perturbation theory with machine learning.</div>


Sign in / Sign up

Export Citation Format

Share Document