Effect of aeration rates on hydraulic characteristics and pollutant removal in an up-flow biological aerated filter

2018 ◽  
Vol 4 (12) ◽  
pp. 2041-2050 ◽  
Author(s):  
Jiehui Ren ◽  
Wen Cheng ◽  
Tian Wan ◽  
Min Wang ◽  
Meng Jiao

Aeration rates could improve the pollutant removal by forming the suitable distribution of flow field, dissolved oxygen and microbial community.

Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3317
Author(s):  
Yuchen An ◽  
Songmin Li ◽  
Xiaoling Wang ◽  
Yuyang Liu ◽  
Ruonan Wang

The purification effect of a biological aerated filter (BAF) mainly comes from the microorganisms in the reactor. Understanding the correlation between microbial community characteristics and environmental factors along the filter has great significance for maintaining good operation and improving the removal efficiency of the filter. A two-stage BAF was employed to treat domestic sewage under organic loads of 1.02 and 1.55 kg/m3·d for 15 days each. 16S rDNA high-throughput sequencing technology and redundancy analysis were applied to explore the correlation between microbial community characteristics and environmental variables. The results showed that: (1) the crucial organic-degrading bacteria in the A-stage filter were of the genus Novosphingobium, which had a significant increase in terms of relative abundance at sampling outlet A3 (135 cm of the filling height) after the increase of organic load; (2) the microbial communities at different positions in the B-stage filter were similarly affected by environmental factors, and the main bacteria associated with nitrogen removal in the B-stage filter were Zoogloea and Rhodocyclus; and (3) to improve the pollutant removal performance of this two-stage biological aerated filter, a strategy of adding an internal circulation in the B-stage filter can be adopted.


2022 ◽  
Vol 2148 (1) ◽  
pp. 012037
Author(s):  
Shuqin Wang ◽  
Zhiqiang Zhang ◽  
Ning Wang ◽  
Wenqi Zhao ◽  
Chungang Yuan

Abstract In this paper, a small biological aerated filter for experimental use was designed, and a method was explored to optimize the nitrogen removal efficiency by using FLUENT software to simulate the particle size of the filler, the amount of the filler, the initial concentration of ammonia nitrogen, dissolved oxygen and other operating parameters. Through the simulation experiment, the optimal design parameters of the particle size of filler, the amount of filler, the initial concentration of ammonia nitrogen and the dissolved oxygen of the biological aerated filter are 4mm, 60%, 15% and 1.5%, respectively, when the removal efficiency of ammonia nitrogen exceeds 30% reported in the literature. It provides a reference for the experimental research and practical application of biological aerated filter (BAF) denitrification.


2011 ◽  
Vol 1 (1) ◽  
pp. 27-35 ◽  
Author(s):  
Pramanik Biplob ◽  
Suja Fatihah ◽  
Zain Shahrom ◽  
ElShafie Ahmed

An upflow, partially packed biological aerated filter (BAF) reactor was used to remove nitrogen in the form of ammonia ions by a nitrification process that involves physical, chemical and biological phenomena governed by a variety of parameters such as dissolved oxygen concentration, pH and alkalinity. Dissolved oxygen (DO) and pH were shown to have effects on the nitrification process in this study. Three C:N ratios i.e., 10, 4 and 1 were compared during this study by varying the nitrogen loading while the carbon loading was kept constant at 0.405 ± 0.015 kg chemical oxygen demand m−3 d−1. The removal efficiencies of ammonia linearly increase with a rise of the initial concentration of ammonia-nitrogen. The results of the 115 days' operation of the BAF system showed that its overall NH3-N performance was good, where a removal efficiency of 87.0 ± 2.9%, 89.2 ± 1.38% and 91.1 ± 0.7% and COD removal of 87.6 ± 2.9%, 86.4 ± 2.1% and 89.5 ± 2.6% were achieved for the C:N ratios of 10, 4 and 1, respectively on average, over 6 h hydraulic retention time (HRT). No clogging occurred throughout the period although backwashing was eliminated. It was concluded that the BAF system proposed in this study removed nitrogen by the nitrification process extremely well.


Sign in / Sign up

Export Citation Format

Share Document