Characterization of proteins with Siaα2-3/6Gal-linked glycans from bovine milk and role of their glycans against influenza A virus

2018 ◽  
Vol 9 (10) ◽  
pp. 5198-5208 ◽  
Author(s):  
Hanjie Yu ◽  
Yaogang Zhong ◽  
Zhiwei Zhang ◽  
Xiawei Liu ◽  
Kun Zhang ◽  
...  

The bovine milk proteins have a wide range of functions, but the role of the attached glycans in their biological functions has not been fully understood yet.

2008 ◽  
Vol 18 (12) ◽  
pp. 1097-1102 ◽  
Author(s):  
Maryam Salami ◽  
Reza Yousefi ◽  
Mohammad Reza Ehsani ◽  
Michèle Dalgalarrondo ◽  
Jean-Marc Chobert ◽  
...  

2020 ◽  
Vol 222 (5) ◽  
pp. 820-831 ◽  
Author(s):  
Jurre Y Siegers ◽  
Boris Novakovic ◽  
Katina D Hulme ◽  
Rebecca J Marshall ◽  
Conor J Bloxham ◽  
...  

Abstract Background Influenza A virus (IAV) causes a wide range of extrarespiratory complications. However, the role of host factors in these complications of influenza virus infection remains to be defined. Methods Here, we sought to use transcriptional profiling, virology, histology, and echocardiograms to investigate the role of a high-fat diet in IAV-associated cardiac damage. Results Transcriptional profiling showed that, compared to their low-fat counterparts (LF mice), mice fed a high-fat diet (HF mice) had impairments in inflammatory signaling in the lung and heart after IAV infection. This was associated with increased viral titers in the heart, increased left ventricular mass, and thickening of the left ventricular wall in IAV-infected HF mice compared to both IAV-infected LF mice and uninfected HF mice. Retrospective analysis of clinical data revealed that cardiac complications were more common in patients with excess weight, an association which was significant in 2 out of 4 studies. Conclusions Together, these data provide the first evidence that a high-fat diet may be a risk factor for the development of IAV-associated cardiovascular damage and emphasizes the need for further clinical research in this area.


2018 ◽  
Vol 17 (5) ◽  
pp. 325-337 ◽  
Author(s):  
Hojjat Borna ◽  
Kasim Assadoulahei ◽  
Gholamhossein Riazi ◽  
Asghar Beigi Harchegani ◽  
Alireza Shahriary

Background & Objective: Neurodegenrative diseases are among the most widespread lifethreatening disorders around the world in elderly ages. The common feature of a group of neurodegenerative disorders, called tauopathies, is an accumulation of microtubule associated protein tau inside the neurons. The exact mechanism underlying tauopathies is not well-understood but several factors such as traumatic brain injuries and genetics are considered as potential risk factors. Although tau protein is well-known for its key role in stabilizing and organization of axonal microtubule network, it bears a broad range of functions including DNA protection and participation in signaling pathways. Moreover, the flexible unfolded structure of tau facilitates modification of tau by a wide range of intracellular enzymes which in turn broadens tau function and interaction spectrum. The distinctive properties of tau protein concomitant with the crucial role of tau interaction partners in the progression of neurodegeneration suggest tau and its binding partners as potential drug targets for the treatment of neurodegenerative diseases. Conclusion: This review aims to give a detailed description of structure, functions and interactions of tau protein in order to provide insight into potential therapeutic targets for treatment of tauopathies.


2021 ◽  
Vol 22 (5) ◽  
pp. 2409
Author(s):  
Anastasia A. Bizyaeva ◽  
Dmitry A. Bunin ◽  
Valeria L. Moiseenko ◽  
Alexandra S. Gambaryan ◽  
Sonja Balk ◽  
...  

Nucleic acid aptamers are generally accepted as promising elements for the specific and high-affinity binding of various biomolecules. It has been shown for a number of aptamers that the complexes with several related proteins may possess a similar affinity. An outstanding example is the G-quadruplex DNA aptamer RHA0385, which binds to the hemagglutinins of various influenza A virus strains. These hemagglutinins have homologous tertiary structures but moderate-to-low amino acid sequence identities. Here, the experiment was inverted, targeting the same protein using a set of related, parallel G-quadruplexes. The 5′- and 3′-flanking sequences of RHA0385 were truncated to yield parallel G-quadruplex with three propeller loops that were 7, 1, and 1 nucleotides in length. Next, a set of minimal, parallel G-quadruplexes with three single-nucleotide loops was tested. These G-quadruplexes were characterized both structurally and functionally. All parallel G-quadruplexes had affinities for both recombinant hemagglutinin and influenza virions. In summary, the parallel G-quadruplex represents a minimal core structure with functional activity that binds influenza A hemagglutinin. The flanking sequences and loops represent additional features that can be used to modulate the affinity. Thus, the RHA0385–hemagglutinin complex serves as an excellent example of the hypothesis of a core structure that is decorated with additional recognizing elements capable of improving the binding properties of the aptamer.


2021 ◽  
Vol 22 (5) ◽  
pp. 2754
Author(s):  
Naila Qayyum ◽  
Muhammad Haseeb ◽  
Moon Suk Kim ◽  
Sangdun Choi

Thioredoxin-interacting protein (TXNIP), widely known as thioredoxin-binding protein 2 (TBP2), is a major binding mediator in the thioredoxin (TXN) antioxidant system, which involves a reduction-oxidation (redox) signaling complex and is pivotal for the pathophysiology of some diseases. TXNIP increases reactive oxygen species production and oxidative stress and thereby contributes to apoptosis. Recent studies indicate an evolving role of TXNIP in the pathogenesis of complex diseases such as metabolic disorders, neurological disorders, and inflammatory illnesses. In addition, TXNIP has gained significant attention due to its wide range of functions in energy metabolism, insulin sensitivity, improved insulin secretion, and also in the regulation of glucose and tumor suppressor activities in various cancers. This review aims to highlight the roles of TXNIP in the field of diabetology, neurodegenerative diseases, and inflammation. TXNIP is found to be a promising novel therapeutic target in the current review, not only in the aforementioned diseases but also in prolonged microvascular and macrovascular diseases. Therefore, TXNIP inhibitors hold promise for preventing the growing incidence of complications in relevant diseases.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Daisuke Kase ◽  
Keiji Imoto

Hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels were first reported in heart cells and are recently known to be involved in a variety of neural functions in healthy and diseased brains. HCN channels generate inward currents when the membrane potential is hyperpolarized. Voltage dependence of HCN channels is regulated by intracellular signaling cascades, which contain cyclic AMP, PIP2, and TRIP8b. In addition, voltage-gated potassium channels have a strong influence on HCN channel activity. Because of these funny features, HCN channel currents, previously called funny currents, can have a wide range of functions that are determined by a delicate balance of modulatory factors. These multifaceted features also make it difficult to predict and elucidate the functional role of HCN channels in actual neurons. In this paper, we focus on the impacts of HCN channels on neural activity. The functions of HCN channels reported previously will be summarized, and their mechanisms will be explained by using numerical simulation of simplified model neurons.


2016 ◽  
Vol 8 (17) ◽  
pp. 2017-2031 ◽  
Author(s):  
Simona Panella ◽  
Maria Elena Marcocci ◽  
Ignacio Celestino ◽  
Sergio Valente ◽  
Clemens Zwergel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document