Microfluidic screening of antibiotic susceptibility at a single-cell level shows the inoculum effect of cefotaxime on E. coli

Lab on a Chip ◽  
2018 ◽  
Vol 18 (23) ◽  
pp. 3668-3677 ◽  
Author(s):  
Witold Postek ◽  
Pawel Gargulinski ◽  
Ott Scheler ◽  
Tomasz S. Kaminski ◽  
Piotr Garstecki

We separate emulsions with an immiscible oil phase to identify reaction conditions by the location of emulsion in emulsion series.

2020 ◽  
Vol 11 (25) ◽  
pp. 6352-6361 ◽  
Author(s):  
Kaixiang Zhang ◽  
Shangshang Qin ◽  
Sixuan Wu ◽  
Yan Liang ◽  
Jinghong Li

Recent developments of microfluidics-based antibiotic susceptibility tests (ASTs) at the single-cell or single-molecule level are summarized for guiding antibiotic treatment.


The Analyst ◽  
2014 ◽  
Vol 139 (20) ◽  
pp. 5254-5262 ◽  
Author(s):  
Zhicheng Long ◽  
Anne Olliver ◽  
Elisa Brambilla ◽  
Bianca Sclavi ◽  
Marco Cosentino Lagomarsino ◽  
...  

We grewE. coliin a microfluidic chemostat and monitored the dynamics of cell dimensions and reporter GFP expression in individual cells during nutritional upshift or downshift.


2019 ◽  
Vol 86 (3) ◽  
Author(s):  
Wenchao Zhang ◽  
Yan Wang ◽  
Huining Lu ◽  
Qin Liu ◽  
Chuandong Wang ◽  
...  

ABSTRACT The predatory behavior of Myxococcus xanthus has attracted extensive attention due to its unique social traits and inherent biological activities. In addition to group hunting, individual M. xanthus cells are able to kill and lyse prey cells; however, there is little understanding of the dynamics of solitary predation. In this study, by employing a bacterial tracking technique, we investigated M. xanthus predatory dynamics on Escherichia coli at the single-cell level. The killing and lysis of E. coli by a single M. xanthus cell was monitored in real time by microscopic observation, and the plasmolysis of prey cells was identified at a relatively early stage of solitary predation. After quantitative characterization of their solitary predatory behavior, M. xanthus cells were found to respond more dramatically to direct contact with live E. coli cells than heat-killed or UV-killed cells, showing slower predator motion and faster lysing of prey. Among the three contact-dependent killing modes classified according to the major subareas of M. xanthus cells in contact with prey, leading pole contact was observed most. After killing the prey, approximately 72% of M. xanthus cells were found to leave without thorough degradation of the lysed prey, and this postresidence behavior is described as a lysis-leave pattern, indicating that solitary predation has low efficiency in terms of prey-cell consumption. Our results provide a detailed description of the single-cell level dynamics of M. xanthus solitary predation from both prey and predator perspectives. IMPORTANCE Bacterial predation plays multiple essential roles in bacterial selection and mortality within microbial ecosystems. In addition to its ecological and evolutionary importance, many potential applications of bacterial predation have been proposed. The myxobacterium Myxococcus xanthus is a well-known predatory member of the soil microbial community. Its predation is commonly considered a collective behavior comparable to a wolf pack attack; however, individual M. xanthus cells are also able to competently lead to the lysis of a prey cell. Using a bacterial tracking technique, we are able to observe and analyze solitary predation by M. xanthus on Escherichia coli at the single-cell level and reveal the dynamics of both predator and prey during the process. The present study will not only provide a comprehensive understanding of M. xanthus solitary predation but also help to explain why M. xanthus often displays multicellular characteristic predatory behaviors in nature, while a single cell is capable of predation.


2011 ◽  
Vol 100 (3) ◽  
pp. 27a
Author(s):  
Alex Dajkovic ◽  
Ivan Matic

Author(s):  
Felix Weber ◽  
Tatiana Zaliznyak ◽  
Virginia P. Edgcomb ◽  
Gordon T. Taylor

The suitability of stable isotope probing (SIP) and Raman microspectroscopy to measure growth rates of heterotrophic bacteria at the single-cell level was evaluated. Label assimilation into E. coli biomass during growth on a complex 13 C-labeled carbon source was monitored in time course experiments. 13 C-incorporation into various biomolecules was measured by spectral “red shifts” of Raman-scattered emissions. The 13 C- and 12 C-isotopologues of the amino acid phenylalanine (Phe) proved to be a quantitatively accurate reporter molecules of cellular isotopic fractional abundances ( f cell ). Values of f cell determined by Raman microspectroscopy and independently by isotope-ratio mass spectrometry (IRMS) over a range of isotopic enrichments were statistically indistinguishable. Progressive labeling of Phe in E. coli cells among a range of 13 C/ 12 C organic substrate admixtures occurred predictably through time. Relative isotopologue abundances of Phe determined by Raman spectral analysis enabled accurate calculation of bacterial growth rates as confirmed independently by optical density (OD) measurements. Results demonstrate that combining stable isotope probing (SIP) and Raman microspectroscopy can be a powerful tool for studying bacterial growth at the single-cell level when grown on defined or complex organic 13 C-carbon sources even in mixed microbial assemblages. Importance: Population growth dynamics and individual cell growth rates are the ultimate expressions of a microorganism’s fitness to its environmental conditions, whether natural or engineered. Natural habitats and many industrial settings harbor complex microbial assemblages. Their heterogeneity in growth responses to existing and changing conditions is often difficult to grasp by standard methodologies. In this proof of concept study, we tested whether Raman microspectroscopy can reliably quantify assimilation of isotopically-labeled nutrients into E. coli cells and enable determination of individual growth rates among heterotrophic bacteria. Raman-derived growth rate estimates were statistically indistinguishable from those derived by standard optical density measurements of the same cultures. Raman microspectroscopy also can be combined with methods for phylogenetic identification. We report development of Raman-based techniques that enable researchers to directly link genetic identity to functional traits and rate measurements of single cells within mixed microbial assemblages, currently a major technical challenge in microbiological research.


2019 ◽  
Author(s):  
John T. Sauls ◽  
Sarah E. Cox ◽  
Quynh Do ◽  
Victoria Castillo ◽  
Zulfar Ghulam-Jelani ◽  
...  

Bacillus subtilis and Escherichia coli are evolutionarily divergent model organisms that have elucidated fundamental differences between Gram-positive and Gram-negative bacteria, respectively. Despite their differences in cell cycle control at the molecular level, both organisms follow the same phenomenological principle for cell size homeostasis known as the adder. We thus asked to what extent B. subtilis and E. coli share common physiological principles in coordinating growth and the cell cycle. To answer this question, we measured physiological parameters of B. subtilis under various steady-state growth conditions with and without translation inhibition at both population and single-cell level. These experiments revealed core shared physiological principles between B. subtilis and E. coli. Specifically, we show that both organisms maintain an invariant cell size per replication origin at initiation, with and without growth inhibition, and even during nutrient shifts at the single-cell level. Furthermore, both organisms also inherit the same “hierarchy” of physiological parameters ranked by their coefficient of variation. Based on these findings, we suggest that the basic coordination principles between growth and the cell cycle in bacteria may have been established in the very early stages of evolution.


Sign in / Sign up

Export Citation Format

Share Document