scholarly journals Synthesis and biological evaluation of zinc chelating compounds as metallo-β-lactamase inhibitors

MedChemComm ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 528-537 ◽  
Author(s):  
Geir Kildahl-Andersen ◽  
Christian Schnaars ◽  
Anthony Prandina ◽  
Sylvie Radix ◽  
Marc Le Borgne ◽  
...  

New MBL inhibitor renders resistant Gram negative bacteria susceptible to carbapenems.

2018 ◽  
Vol 29 (1) ◽  
pp. 107 ◽  
Author(s):  
Hadeel Majed ◽  
Firyal W. Askar

Agroup of benzimidazole derivatives bearing different heterocyclic moieties such as Schiff bases, 2-azetidinone and  4-thiazolidinone were efficiently prepared. The structures of the newly compounds were characterized by FTIRand ¹H NMR spectra. The synthesized compounds were evaluated for their antimicrobial activities against gram-positive and gram negative bacteria and fungi using the microdilution procedure.


2017 ◽  
Vol 15 (27) ◽  
pp. 5743-5755 ◽  
Author(s):  
Shashidhar Nizalapur ◽  
Onder Kimyon ◽  
Eugene Yee ◽  
Mohan M. Bhadbhade ◽  
Mike Manefield ◽  
...  

Novel acyclic and cyclic glyoxamides that inhibited quorum sensing mechanism and biofilm formation in Gram-negative bacteria such as P. aeruginosa and E. coli.


2017 ◽  
Vol 68 (3) ◽  
pp. 586-588
Author(s):  
Gladiola Tantaru ◽  
Antonia Poiata ◽  
Nela Bibire ◽  
Alina Diana Panainte ◽  
Mihai Apostu ◽  
...  

A new Schiff base ligand, N-hydroxy-N�-salicylidene-urea was synthesized through the condensation of salicylaldehyde with hydroxyurea. The copper(II) complex of the Schiff base has been also obtained. Their structure has been proven using spectral methods such as UV-Vis, FT-IR, 1H-NMR and elemental analysis. The antimicrobial activity of the copper(II) complex was evaluated through comparison to the activity of the Schiff base on various bacterial strains. All tested compounds were very active against both gram-positive and gram-negative bacteria.


Author(s):  
Pooja Pisal ◽  
Meenakshi Deodhar ◽  
Amol Kale ◽  
Ganesh Nigade ◽  
Smita Pawar

Objective: A new series 2-phenyl-3-(substituted benzo[d] thiazol-2-ylamino)-quinazoline-4(3H)-one was prepared by the fusion method by reacting 2-phenyl benzoxazine with 2-hydrazino benzothiazole and it was evaluated for their antimicrobial activity against gram positive, gram negative bacteria and fungi.Methods: Titled compounds were synthesized by fusion reactions. These compounds were evaluated by in vitro antibacterial and antifungal activity using the minimum inhibitory concentration and zone of inhibition methods. The synthesized compounds were characterized with the help of infrared, NMR and mass spectral studies. The benzothiazole moiety and the quinazoline ring have previously shown DNA gyrase inhibition and target related antibacterial activity. Thus, molecular docking studies of synthesized compounds were carried out (PDB: 3G75) to study the possible interaction of compounds with the target. The batch grid docking was performed to determine the probable.Results: These compounds showed significant activity against gram positive and gram negative bacteria as well against the fungi. The compound A5 was found to be active against B. subtilis, P aeruginosa and C. albican at 12.5 µg/ml MIC. The compound A3 was found to be active against all microbial strains selected at 25 and 12.5 µg/ml MIC.Conclusion: Though the relationship between the activities shown by these compounds in, the antimicrobial study is still to be established, the docking studies conducted found to be consistent with antimicrobial results. Thus the results indicate that the designed structure can be a potential lead as an antimicrobial agent.


2019 ◽  
Vol 4 (4) ◽  
pp. 240-243
Author(s):  
P.M. Akbari ◽  
V.R. Shah

A series of new substituted cyclohexenone derivatives have been synthesized by the reaction of various substituted chalcones with ethylacetoacetate. Some new N-(4-(3-aryl-acryloyl)phenyl)cyclopropane carboxamide were prepared by Claisen-Schmidt condensation method in presence of sodium hydroxide in ethanol solvent under stirring. The synthesized compounds were characterized by their spectral (IR, NMR, Mass) data and screened for their antimicrobial activities against Gram-positive and Gram-negative bacteria by using standard antimicrobial drugs.


2016 ◽  
Vol 7 (6) ◽  
pp. 623-628 ◽  
Author(s):  
Haruaki Kurasaki ◽  
Kosuke Tsuda ◽  
Mariko Shinoyama ◽  
Noriko Takaya ◽  
Yuko Yamaguchi ◽  
...  

2021 ◽  
Author(s):  
Inga S. Shchelik ◽  
Karl Gademann

Due to a steady increase of microbial resistance, there is a need to increase the effectiveness of antibiotic performance by involving additional mechanisms of their penetration or retention for their better action. Cephalosporins are a successful group of antibiotics to combat pathogenic microorganisms, including drug-resistant strains. In this study, we investigated the effect of newly synthesized cephalosporin derivatives with cyclic disulfide modifications against several Gram-positive and Gram-negative strains as well as against biofilm formation. The incorporation of asparagusic acid was found to be effective in improving the activity of the drug against Gram-negative strains. Furthermore, we could demonstrate the successful inhibition of biofilm formation for S. aureus and P. aeruginosa at similar concentrations as obtained against planktonic cells. We propose that the incorporation of cyclic disulfides is one additional strategy to improve antibiotic activity and to combat bacterial infections.


Sign in / Sign up

Export Citation Format

Share Document